Self-service Data Classification Using Interactive Visualization and
Interpretable Machine Learning
- URL: http://arxiv.org/abs/2107.04971v1
- Date: Sun, 11 Jul 2021 05:39:14 GMT
- Title: Self-service Data Classification Using Interactive Visualization and
Interpretable Machine Learning
- Authors: Sridevi Narayana Wagle, Boris Kovalerchuk
- Abstract summary: Iterative Visual Logical (IVLC) is an interpretable machine learning algorithm.
IVLC is especially helpful when dealing with sensitive and crucial data like cancer data in the medical domain.
This chapter proposes an automated classification approach combined with new Coordinate Order (COO) algorithm and genetic algorithm.
- Score: 9.13755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning algorithms often produce models considered as complex
black-box models by both end users and developers. They fail to explain the
model in terms of the domain they are designed for. The proposed Iterative
Visual Logical Classifier (IVLC) is an interpretable machine learning algorithm
that allows end users to design a model and classify data with more confidence
and without having to compromise on the accuracy. Such technique is especially
helpful when dealing with sensitive and crucial data like cancer data in the
medical domain with high cost of errors. With the help of the proposed
interactive and lossless multidimensional visualization, end users can identify
the pattern in the data based on which they can make explainable decisions.
Such options would not be possible in black box machine learning methodologies.
The interpretable IVLC algorithm is supported by the Interactive Shifted Paired
Coordinates Software System (SPCVis). It is a lossless multidimensional data
visualization system with user interactive features. The interactive approach
provides flexibility to the end user to perform data classification as
self-service without having to rely on a machine learning expert. Interactive
pattern discovery becomes challenging while dealing with large data sets with
hundreds of dimensions/features. To overcome this problem, this chapter
proposes an automated classification approach combined with new Coordinate
Order Optimizer (COO) algorithm and a Genetic algorithm. The COO algorithm
automatically generates the coordinate pair sequences that best represent the
data separation and the genetic algorithm helps optimizing the proposed IVLC
algorithm by automatically generating the areas for data classification. The
feasibility of the approach is shown by experiments on benchmark datasets
covering both interactive and automated processes used for data classification.
Related papers
- Approaching Metaheuristic Deep Learning Combos for Automated Data Mining [0.5419570023862531]
This work proposes a means of combining meta-heuristic methods with conventional classifiers and neural networks in order to perform automated data mining.
Experiments on the MNIST dataset for handwritten digit recognition were performed.
It was empirically observed that using a ground truth labeled dataset's validation accuracy is inadequate for correcting labels of other previously unseen data instances.
arXiv Detail & Related papers (2024-10-16T10:28:22Z) - Continual Learning for Multimodal Data Fusion of a Soft Gripper [1.0589208420411014]
A model trained on one data modality often fails when tested with a different modality.
We introduce a continual learning algorithm capable of incrementally learning different data modalities.
We evaluate the algorithm's effectiveness on a challenging custom multimodal dataset.
arXiv Detail & Related papers (2024-09-20T09:53:27Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z) - FDive: Learning Relevance Models using Pattern-based Similarity Measures [27.136998442865217]
We present FDive, a visual active learning system that helps to create visually explorable relevance models.
Based on the best-ranked similarity measure, the system calculates an interactive Self-Organizing Map-based relevance model.
It also automatically prompts further relevance feedback to improve its accuracy.
arXiv Detail & Related papers (2019-07-29T15:37:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.