論文の概要: Transformers with multi-modal features and post-fusion context for
e-commerce session-based recommendation
- arxiv url: http://arxiv.org/abs/2107.05124v1
- Date: Sun, 11 Jul 2021 20:02:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 00:52:23.795227
- Title: Transformers with multi-modal features and post-fusion context for
e-commerce session-based recommendation
- Title(参考訳): eコマースセッションベースレコメンデーションのためのマルチモーダル機能とポストフュージョンコンテキストを備えたトランスフォーマー
- Authors: Gabriel de Souza P. Moreira and Sara Rabhi and Ronay Ak and Md Yasin
Kabir and Even Oldridge
- Abstract要約: 我々は、SIGIR 2021 Workshop on E-Commerce Data Challengeの勧告タスクにおいて、勝利したソリューションの1つを提示する。
我々のソリューションはNLP技術にインスパイアされ、自動回帰と自動エンコーディングのアプローチで訓練された2つのTransformerアーキテクチャのアンサンブルで構成されています。
- 参考スコア(独自算出の注目度): 1.189955933770711
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Session-based recommendation is an important task for e-commerce services,
where a large number of users browse anonymously or may have very distinct
interests for different sessions. In this paper we present one of the winning
solutions for the Recommendation task of the SIGIR 2021 Workshop on E-commerce
Data Challenge. Our solution was inspired by NLP techniques and consists of an
ensemble of two Transformer architectures - Transformer-XL and XLNet - trained
with autoregressive and autoencoding approaches. To leverage most of the rich
dataset made available for the competition, we describe how we prepared
multi-model features by combining tabular events with textual and image
vectors. We also present a model prediction analysis to better understand the
effectiveness of our architectures for the session-based recommendation.
- Abstract(参考訳): セッションベースのレコメンデーションはEコマースサービスにとって重要なタスクであり、多数のユーザが匿名でブラウズしたり、異なるセッションに対して非常に異なる関心を持つことがある。
本稿では,SIGIR 2021 Workshop on E-Commerce Data Challenge の推薦課題における勝者の1つについて述べる。
私たちのソリューションはnlp技術にインスパイアされ、transformer-xlとxlnetという2つのトランスフォーマーアーキテクチャで構成されています。
コンペで利用可能なリッチデータセットのほとんどを活用するために、表形式のイベントとテキストベクトルと画像ベクトルを組み合わせることで、マルチモデル機能をどのように準備したかを述べる。
また,セッションベースレコメンデーションにおけるアーキテクチャの有効性をよりよく理解するために,モデル予測分析を提案する。
関連論文リスト
- MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - Amazon-M2: A Multilingual Multi-locale Shopping Session Dataset for
Recommendation and Text Generation [127.35910314813854]
Amazon Multi-locale Shopping Sessionデータセット、すなわちAmazon-M2を提示します。
6つの異なるローカライズされた数百万のユーザセッションからなる、最初の多言語データセットである。
注目すべきは、データセットがパーソナライズとユーザの好みの理解を高めるのに役立つことだ。
論文 参考訳(メタデータ) (2023-07-19T00:08:49Z) - Learning Instance-Level Representation for Large-Scale Multi-Modal
Pretraining in E-commerce [35.73830796500975]
本研究では, ECLIPと呼ばれるインスタンス中心のマルチモーダル事前学習パラダイムを提案する。
高価な手作業によるアノテーションに頼ることなく、モデルが望ましい製品インスタンスに集中できるようにするために、2つの特別な設定されたプレテキストタスクが提案されている。
ECLIPは、さまざまな下流タスクにおいて既存の手法をはるかに上回り、現実世界のEコマースアプリケーションへの強力な転送可能性を示している。
論文 参考訳(メタデータ) (2023-04-06T04:14:41Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge
Graph Completion [112.27103169303184]
マルチモーダル知識グラフ(MKG)は、視覚テキストの事実知識を整理する。
MKGformerは、マルチモーダルリンク予測、マルチモーダルRE、マルチモーダルNERの4つのデータセット上でSOTA性能を得ることができる。
論文 参考訳(メタデータ) (2022-05-04T23:40:04Z) - CommerceMM: Large-Scale Commerce MultiModal Representation Learning with
Omni Retrieval [30.607369837039904]
CommerceMMは、コンテンツに関連するコマーストピックを多種多様な粒度の理解を提供するマルチモーダルモデルである。
我々は、Omni-Retrieval pre-trainingと呼ばれる9つの新しいクロスモーダル・クロスペア検索タスクを提案する。
本モデルでは,微調整後,7つの商取引関連下流タスクにおける最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-02-15T08:23:59Z) - Session-aware Linear Item-Item Models for Session-based Recommendation [16.081904457871815]
セッションベースのレコメンデーションは、セッションで消費された以前の項目のシーケンスから次の項目を予測することを目的とする。
セッションの全体的側面を考慮した簡便かつ効果的な線形モデルを提案する。
論文 参考訳(メタデータ) (2021-03-30T06:28:40Z) - BERT Goes Shopping: Comparing Distributional Models for Product
Representations [4.137464623395377]
コンテキスト埋め込みによるNLPタスクの性能改善に触発されて,BERTのようなアーキテクチャをeコマースに移行することを提案する。
当社のモデルであるProdBERTは、マスク付きセッションモデリングにより製品の表現を生成するために訓練されている。
論文 参考訳(メタデータ) (2020-12-17T18:18:03Z) - Scenario-aware and Mutual-based approach for Multi-scenario
Recommendation in E-Commerce [12.794276204716642]
不均質な電子商取引のシナリオでユーザーのための正確な推奨を行う方法は、まだ継続的な研究トピックです。
本稿では,複数のシナリオの違いと類似性を活用するScenario-aware Mutual Learning (SAML) という新しい推奨モデルを提案する。
論文 参考訳(メタデータ) (2020-12-16T13:52:14Z) - Pre-training Graph Transformer with Multimodal Side Information for
Recommendation [82.4194024706817]
本稿では,項目側情報とその関連性を考慮した事前学習戦略を提案する。
我々はMCNSamplingという新しいサンプリングアルゴリズムを開発し、各項目のコンテキスト近傍を選択する。
The proposed Pre-trained Multimodal Graph Transformer (PMGT) learns item representations with two objectives: 1) graph structure reconstruction, 2) masked node feature reconstruction。
論文 参考訳(メタデータ) (2020-10-23T10:30:24Z) - Conversational Semantic Parsing [50.954321571100294]
共参照解決やコンテキスト転送といったセッションベースのプロパティは、パイプラインシステムで下流で処理される。
60kの発話からなる20kセッションからなる,セッションベースで構成型タスク指向構文解析データセットを新たにリリースする。
セッションベース解析のためのSeq2Seqモデルの新たなファミリーを提案し、ATIS, SNIPS, TOP, DSTC2における現在の最先端技術と同等の性能を実現する。
論文 参考訳(メタデータ) (2020-09-28T22:08:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。