Perceptual-based deep-learning denoiser as a defense against adversarial
attacks on ASR systems
- URL: http://arxiv.org/abs/2107.05222v1
- Date: Mon, 12 Jul 2021 07:00:06 GMT
- Title: Perceptual-based deep-learning denoiser as a defense against adversarial
attacks on ASR systems
- Authors: Anirudh Sreeram, Nicholas Mehlman, Raghuveer Peri, Dillon Knox,
Shrikanth Narayanan
- Abstract summary: Adversarial attacks attempt to force misclassification by adding small perturbations to the original speech signal.
We propose to counteract this by employing a neural-network based denoiser as a pre-processor in the ASR pipeline.
We found that training the denoisier using a perceptually motivated loss function resulted in increased adversarial robustness.
- Score: 26.519207339530478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we investigate speech denoising as a defense against
adversarial attacks on automatic speech recognition (ASR) systems. Adversarial
attacks attempt to force misclassification by adding small perturbations to the
original speech signal. We propose to counteract this by employing a
neural-network based denoiser as a pre-processor in the ASR pipeline. The
denoiser is independent of the downstream ASR model, and thus can be rapidly
deployed in existing systems. We found that training the denoisier using a
perceptually motivated loss function resulted in increased adversarial
robustness without compromising ASR performance on benign samples. Our defense
was evaluated (as a part of the DARPA GARD program) on the 'Kenansville' attack
strategy across a range of attack strengths and speech samples. An average
improvement in Word Error Rate (WER) of about 7.7% was observed over the
undefended model at 20 dB signal-to-noise-ratio (SNR) attack strength.
Related papers
- Robustifying automatic speech recognition by extracting slowly varying features [16.74051650034954]
We propose a defense mechanism against targeted adversarial attacks.
We use hybrid ASR models trained on data pre-processed in such a way.
Our model shows a performance on clean data similar to the baseline model, while being more than four times more robust.
arXiv Detail & Related papers (2021-12-14T13:50:23Z) - Blackbox Untargeted Adversarial Testing of Automatic Speech Recognition
Systems [1.599072005190786]
Speech recognition systems are prevalent in applications for voice navigation and voice control of domestic appliances.
Deep neural networks (DNNs) have been shown to be susceptible to adversarial perturbations.
To help test the correctness of ASRS, we propose techniques that automatically generate blackbox.
arXiv Detail & Related papers (2021-12-03T10:21:47Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Removing Adversarial Noise in Class Activation Feature Space [160.78488162713498]
We propose to remove adversarial noise by implementing a self-supervised adversarial training mechanism in a class activation feature space.
We train a denoising model to minimize the distances between the adversarial examples and the natural examples in the class activation feature space.
Empirical evaluations demonstrate that our method could significantly enhance adversarial robustness in comparison to previous state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-19T10:42:24Z) - Class-Conditional Defense GAN Against End-to-End Speech Attacks [82.21746840893658]
We propose a novel approach against end-to-end adversarial attacks developed to fool advanced speech-to-text systems such as DeepSpeech and Lingvo.
Unlike conventional defense approaches, the proposed approach does not directly employ low-level transformations such as autoencoding a given input signal.
Our defense-GAN considerably outperforms conventional defense algorithms in terms of word error rate and sentence level recognition accuracy.
arXiv Detail & Related papers (2020-10-22T00:02:02Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z) - Detecting Audio Attacks on ASR Systems with Dropout Uncertainty [40.9172128924305]
We show that our defense is able to detect attacks created through optimized perturbations and frequency masking.
We test our defense on Mozilla's CommonVoice dataset, the UrbanSound dataset, and an excerpt of the LibriSpeech dataset.
arXiv Detail & Related papers (2020-06-02T19:40:38Z) - Detecting Adversarial Examples for Speech Recognition via Uncertainty
Quantification [21.582072216282725]
Machine learning systems and, specifically, automatic speech recognition (ASR) systems are vulnerable to adversarial attacks.
In this paper, we focus on hybrid ASR systems and compare four acoustic models regarding their ability to indicate uncertainty under attack.
We are able to detect adversarial examples with an area under the receiving operator curve score of more than 0.99.
arXiv Detail & Related papers (2020-05-24T19:31:02Z) - Characterizing Speech Adversarial Examples Using Self-Attention U-Net
Enhancement [102.48582597586233]
We present a U-Net based attention model, U-Net$_At$, to enhance adversarial speech signals.
We conduct experiments on the automatic speech recognition (ASR) task with adversarial audio attacks.
arXiv Detail & Related papers (2020-03-31T02:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.