Computer-Aided Diagnosis of Low Grade Endometrial Stromal Sarcoma
(LGESS)
- URL: http://arxiv.org/abs/2107.05426v1
- Date: Fri, 9 Jul 2021 00:41:18 GMT
- Title: Computer-Aided Diagnosis of Low Grade Endometrial Stromal Sarcoma
(LGESS)
- Authors: Xinxin Yang and Mark Stamp
- Abstract summary: Low grade stromal sarcoma (LGESS) is rare form of cancer, accounting for about 0.2% of all uterine cancer cases.
In this research, uterine tissue biopsy images of potential LGESS patients are preprocessed using segmentation and staining normalization algorithms.
A variety of classic machine learning and leading deep learning models are then applied to classify tissue images as either benign or cancerous.
- Score: 4.492630871726495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low grade endometrial stromal sarcoma (LGESS) is rare form of cancer,
accounting for about 0.2% of all uterine cancer cases. Approximately 75% of
LGESS patients are initially misdiagnosed with leiomyoma, which is a type of
benign tumor, also known as fibroids. In this research, uterine tissue biopsy
images of potential LGESS patients are preprocessed using segmentation and
staining normalization algorithms. A variety of classic machine learning and
leading deep learning models are then applied to classify tissue images as
either benign or cancerous. For the classic techniques considered, the highest
classification accuracy we attain is about 0.85, while our best deep learning
model achieves an accuracy of approximately 0.87. These results indicate that
properly trained learning algorithms can play a useful role in the diagnosis of
LGESS.
Related papers
- Deep Learning Algorithms for Early Diagnosis of Acute Lymphoblastic Leukemia [0.0]
Acute lymphoblastic leukemia (ALL) is a form of blood cancer that affects the white blood cells.
In this study, we propose a binary image classification model to assist in the diagnostic process of ALL.
arXiv Detail & Related papers (2024-07-14T15:35:39Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Vision Transformer-Based Deep Learning for Histologic Classification of Endometrial Cancer [0.7228984887091693]
Endometrial cancer, the fourth most common cancer in females in the United States, with the lifetime risk for developing this disease is approximately 2.8% in women.
This study introduces EndoNet, which uses convolutional neural networks for extracting histologic features and classifying slides based on their visual characteristics into high- and low-grade.
The model was trained on 929 digitized hematoxylin and eosin-stained whole-slide images of endometrial cancer from hysterectomy cases at Dartmouth-Health.
arXiv Detail & Related papers (2023-12-13T19:38:50Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - EBHI-Seg: A Novel Enteroscope Biopsy Histopathological Haematoxylin and
Eosin Image Dataset for Image Segmentation Tasks [21.17913442266469]
Colorectal cancer is a common fatal malignancy, the fourth most common cancer in men, and the third most common cancer in women worldwide.
There is a lack of datasets for histological image segmentation of rectal cancer, which often hampers the assessment accuracy when computer technology is used to aid in diagnosis.
This dataset can provide researchers with new segmentation algorithms for medical diagnosis of colorectal cancer, which can be used in the clinical setting to help doctors and patients.
arXiv Detail & Related papers (2022-12-01T14:37:12Z) - Deep learning-based approach to reveal tumor mutational burden status
from whole slide images across multiple cancer types [41.61294299606317]
Tumor mutational burden (TMB) is a potential genomic biomarker of immunotherapy.
TMB detected through whole exome sequencing lacks clinical penetration in low-resource settings.
In this study, we proposed a multi-scale deep learning framework to address the detection of TMB status from routinely used whole slide images.
arXiv Detail & Related papers (2022-04-07T07:02:32Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Deep Learning-based Computational Pathology Predicts Origins for Cancers
of Unknown Primary [2.645435564532842]
Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined.
Recent work has focused on using genomics and transcriptomics for identification of tumor origins.
We present a deep learning-based computational pathology algorithm that can provide a differential diagnosis for CUP.
arXiv Detail & Related papers (2020-06-24T17:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.