論文の概要: Calliope -- A Polyphonic Music Transformer
- arxiv url: http://arxiv.org/abs/2107.05546v1
- Date: Thu, 8 Jul 2021 08:18:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 13:55:27.177171
- Title: Calliope -- A Polyphonic Music Transformer
- Title(参考訳): Calliope - ポリフォニック・ミュージック・トランスフォーマー
- Authors: Andrea Valenti, Stefano Berti, Davide Bacciu
- Abstract要約: ポリフォニック音楽のマルチトラックシーケンスを効率的にモデル化するためのトランスフォーマーに基づく新しいオートエンコーダモデルCalliopeを提案する。
実験により,我々のモデルは,音楽シーケンスの再構築と生成における技術状況を改善することができることが示された。
- 参考スコア(独自算出の注目度): 9.558051115598657
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The polyphonic nature of music makes the application of deep learning to
music modelling a challenging task. On the other hand, the Transformer
architecture seems to be a good fit for this kind of data. In this work, we
present Calliope, a novel autoencoder model based on Transformers for the
efficient modelling of multi-track sequences of polyphonic music. The
experiments show that our model is able to improve the state of the art on
musical sequence reconstruction and generation, with remarkably good results
especially on long sequences.
- Abstract(参考訳): 音楽のポリフォニックな性質は、深層学習を難しい課題として音楽モデリングに応用する。
一方、transformerのアーキテクチャは、この種のデータに適しているようだ。
本稿では,ポリフォニック音楽のマルチトラックシーケンスを効率的にモデル化するためのトランスフォーマーに基づく,新しいオートエンコーダモデルCalliopeを提案する。
実験により,本モデルは,特に長い系列において非常に良好な結果が得られるような,音楽のシーケンス再構成と生成に関する技術を改善することができることを示した。
関連論文リスト
- Multitrack Music Transcription with a Time-Frequency Perceiver [6.617487928813374]
マルチトラック音楽の書き起こしは、複数の楽器の音符に入力された音声を同時に書き起こすことを目的としている。
本稿では,マルチトラック転写のための音声入力の時間周波数表現をモデル化する,新しいディープニューラルネットワークアーキテクチャPerceiver TFを提案する。
論文 参考訳(メタデータ) (2023-06-19T08:58:26Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - MERT: Acoustic Music Understanding Model with Large-Scale
Self-supervised Training [60.93528635585468]
大規模自己教師型訓練(MERT)を用いた音響音楽非定常モデルを提案する。
教師モデルの優れた組み合わせを同定し、従来の音声・音声の手法よりも性能的に優れていることを示す。
本モデルでは,14の楽曲理解タスクを一般化し,パフォーマンスを向上し,SOTA(State-of-the-art)全体のスコアを達成できる。
論文 参考訳(メタデータ) (2023-05-31T18:27:43Z) - Multi-Genre Music Transformer -- Composing Full Length Musical Piece [0.0]
このプロジェクトの目的は,より適応的な学習プロセスを通じて楽曲の制作を学ぶマルチジェネラルトランスフォーマーを実装することである。
我々は多言語複合語データセットを構築し、このデータセットに基づいて訓練した線形変換器を実装した。
私たちはこのMulti-Genre Transformerと呼んでいます。
論文 参考訳(メタデータ) (2023-01-06T05:27:55Z) - The Power of Reuse: A Multi-Scale Transformer Model for Structural
Dynamic Segmentation in Symbolic Music Generation [6.0949335132843965]
シンボリック・ミュージック・ジェネレーションは、生成モデルの文脈表現能力に依存している。
粗大デコーダと細小デコーダを用いて,グローバルおよびセクションレベルのコンテキストをモデル化するマルチスケールトランスフォーマを提案する。
本モデルは2つのオープンMIDIデータセットで評価され,実験により,同時代のシンボリック・ミュージック・ジェネレーション・モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-05-17T18:48:14Z) - Symphony Generation with Permutation Invariant Language Model [57.75739773758614]
変分不変言語モデルに基づくシンフォニーネットという記号的シンフォニー音楽生成ソリューションを提案する。
シンフォニートークンの超長いシーケンスをモデル化するためのバックボーンとして、新しいトランスフォーマーデコーダアーキテクチャが導入された。
実験結果から,提案手法は人間の構成と比べ,コヒーレント,新規,複雑,調和的な交響曲を生成できることが示唆された。
論文 参考訳(メタデータ) (2022-05-10T13:08:49Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
D2M-GAN(Dance2Music-GAN, D2M-GAN, D2M-GAN)は、ダンスビデオに条件付けされた楽曲のサンプルを生成する新しいマルチモーダルフレームワークである。
提案フレームワークは,ダンスビデオフレームと人体の動きを入力とし,対応する入力に付随する音楽サンプルを生成することを学習する。
論文 参考訳(メタデータ) (2022-04-01T17:53:39Z) - Deep Performer: Score-to-Audio Music Performance Synthesis [30.95307878579825]
Deep Performer(ディープ・パーフォーマー)は、音楽の楽譜合成のための新しいシステムである。
音声とは異なり、音楽はポリフォニーや長い音符を含むことが多い。
提案モデルでは, 鮮明なポリフォニーとハーモニック構造で楽曲を合成できることが示されている。
論文 参考訳(メタデータ) (2022-02-12T10:36:52Z) - Efficient Transformers: A Survey [98.23264445730645]
トランスフォーマーモデルアーキテクチャは、言語、ビジョン、強化学習など、さまざまな領域で有効性があるため、近年大きな関心を集めている。
本稿では,最近の「X-former」モデルの大規模かつ思慮深い選択を特徴付ける。
論文 参考訳(メタデータ) (2020-09-14T20:38:14Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z) - Pop Music Transformer: Beat-based Modeling and Generation of Expressive
Pop Piano Compositions [37.66340344198797]
我々は、既存のトランスフォーマーモデルよりも優れたリズム構造でポップピアノ音楽を構成するポップ・ミュージック・トランスフォーマーを構築した。
特に、入力データにメートル法構造を課すことにより、トランスフォーマーは音楽のビートバーフレーズ階層構造をより容易に認識できるようにする。
論文 参考訳(メタデータ) (2020-02-01T14:12:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。