論文の概要: Calliope -- A Polyphonic Music Transformer
- arxiv url: http://arxiv.org/abs/2107.05546v1
- Date: Thu, 8 Jul 2021 08:18:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 13:55:27.177171
- Title: Calliope -- A Polyphonic Music Transformer
- Title(参考訳): Calliope - ポリフォニック・ミュージック・トランスフォーマー
- Authors: Andrea Valenti, Stefano Berti, Davide Bacciu
- Abstract要約: ポリフォニック音楽のマルチトラックシーケンスを効率的にモデル化するためのトランスフォーマーに基づく新しいオートエンコーダモデルCalliopeを提案する。
実験により,我々のモデルは,音楽シーケンスの再構築と生成における技術状況を改善することができることが示された。
- 参考スコア(独自算出の注目度): 9.558051115598657
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The polyphonic nature of music makes the application of deep learning to
music modelling a challenging task. On the other hand, the Transformer
architecture seems to be a good fit for this kind of data. In this work, we
present Calliope, a novel autoencoder model based on Transformers for the
efficient modelling of multi-track sequences of polyphonic music. The
experiments show that our model is able to improve the state of the art on
musical sequence reconstruction and generation, with remarkably good results
especially on long sequences.
- Abstract(参考訳): 音楽のポリフォニックな性質は、深層学習を難しい課題として音楽モデリングに応用する。
一方、transformerのアーキテクチャは、この種のデータに適しているようだ。
本稿では,ポリフォニック音楽のマルチトラックシーケンスを効率的にモデル化するためのトランスフォーマーに基づく,新しいオートエンコーダモデルCalliopeを提案する。
実験により,本モデルは,特に長い系列において非常に良好な結果が得られるような,音楽のシーケンス再構成と生成に関する技術を改善することができることを示した。
関連論文リスト
- MuseBarControl: Enhancing Fine-Grained Control in Symbolic Music Generation through Pre-Training and Counterfactual Loss [51.85076222868963]
制御信号と対応する音楽トークンを直接リンクする事前学習タスクを導入する。
次に、生成した音楽と制御プロンプトとの整合性を向上する新たな対実的損失を実現する。
論文 参考訳(メタデータ) (2024-07-05T08:08:22Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - StemGen: A music generation model that listens [9.489938613869864]
音楽の文脈に耳を傾けたり反応したりできる音楽生成モデルを作成するための代替パラダイムを提案する。
本稿では,非自己回帰型トランスフォーマーモデルアーキテクチャを用いて,そのようなモデルを構築する方法について述べる。
得られたモデルは、最先端のテキスト条件付きモデルの音質に到達し、その文脈と強い音楽的コヒーレンスを示す。
論文 参考訳(メタデータ) (2023-12-14T08:09:20Z) - Multitrack Music Transcription with a Time-Frequency Perceiver [6.617487928813374]
マルチトラック音楽の書き起こしは、複数の楽器の音符に入力された音声を同時に書き起こすことを目的としている。
本稿では,マルチトラック転写のための音声入力の時間周波数表現をモデル化する,新しいディープニューラルネットワークアーキテクチャPerceiver TFを提案する。
論文 参考訳(メタデータ) (2023-06-19T08:58:26Z) - Simple and Controllable Music Generation [94.61958781346176]
MusicGenは単一の言語モデル(LM)であり、圧縮された離散的な音楽表現、すなわちトークンの複数のストリームで動作する。
以前の作業とは異なり、MusicGenはシングルステージのトランスフォーマーLMと効率的なトークンインターリービングパターンで構成されている。
論文 参考訳(メタデータ) (2023-06-08T15:31:05Z) - MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training [74.32603591331718]
本稿では,MLMスタイルの音響事前学習において,教師モデルと擬似ラベルを組み込んだ大規模自己教師型学習(MERT)を用いた音響音楽理解モデルを提案する。
実験結果から,本モデルでは14曲の楽曲理解タスクを一般化し,性能を向上し,SOTA(State-of-the-art)全体のスコアを達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T18:27:43Z) - Multi-Genre Music Transformer -- Composing Full Length Musical Piece [0.0]
このプロジェクトの目的は,より適応的な学習プロセスを通じて楽曲の制作を学ぶマルチジェネラルトランスフォーマーを実装することである。
我々は多言語複合語データセットを構築し、このデータセットに基づいて訓練した線形変換器を実装した。
私たちはこのMulti-Genre Transformerと呼んでいます。
論文 参考訳(メタデータ) (2023-01-06T05:27:55Z) - The Power of Reuse: A Multi-Scale Transformer Model for Structural
Dynamic Segmentation in Symbolic Music Generation [6.0949335132843965]
シンボリック・ミュージック・ジェネレーションは、生成モデルの文脈表現能力に依存している。
粗大デコーダと細小デコーダを用いて,グローバルおよびセクションレベルのコンテキストをモデル化するマルチスケールトランスフォーマを提案する。
本モデルは2つのオープンMIDIデータセットで評価され,実験により,同時代のシンボリック・ミュージック・ジェネレーション・モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-05-17T18:48:14Z) - Symphony Generation with Permutation Invariant Language Model [57.75739773758614]
変分不変言語モデルに基づくシンフォニーネットという記号的シンフォニー音楽生成ソリューションを提案する。
シンフォニートークンの超長いシーケンスをモデル化するためのバックボーンとして、新しいトランスフォーマーデコーダアーキテクチャが導入された。
実験結果から,提案手法は人間の構成と比べ,コヒーレント,新規,複雑,調和的な交響曲を生成できることが示唆された。
論文 参考訳(メタデータ) (2022-05-10T13:08:49Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
D2M-GAN(Dance2Music-GAN, D2M-GAN, D2M-GAN)は、ダンスビデオに条件付けされた楽曲のサンプルを生成する新しいマルチモーダルフレームワークである。
提案フレームワークは,ダンスビデオフレームと人体の動きを入力とし,対応する入力に付随する音楽サンプルを生成することを学習する。
論文 参考訳(メタデータ) (2022-04-01T17:53:39Z) - Pop Music Transformer: Beat-based Modeling and Generation of Expressive
Pop Piano Compositions [37.66340344198797]
我々は、既存のトランスフォーマーモデルよりも優れたリズム構造でポップピアノ音楽を構成するポップ・ミュージック・トランスフォーマーを構築した。
特に、入力データにメートル法構造を課すことにより、トランスフォーマーは音楽のビートバーフレーズ階層構造をより容易に認識できるようにする。
論文 参考訳(メタデータ) (2020-02-01T14:12:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。