Equivalent Laplacian and Adjacency Quantum Walks on Irregular Graphs
- URL: http://arxiv.org/abs/2107.05580v2
- Date: Mon, 4 Oct 2021 13:22:54 GMT
- Title: Equivalent Laplacian and Adjacency Quantum Walks on Irregular Graphs
- Authors: Thomas G. Wong, Joshua Lockhart
- Abstract summary: The continuous-time quantum walk is a particle evolving by Schr"odinger's equation in discrete space.
In some physical systems, however, the Hamiltonian is proportional to the adjacency matrix instead.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The continuous-time quantum walk is a particle evolving by Schr\"odinger's
equation in discrete space. Encoding the space as a graph of vertices and
edges, the Hamiltonian is proportional to the discrete Laplacian. In some
physical systems, however, the Hamiltonian is proportional to the adjacency
matrix instead. It is well-known that these quantum walks are equivalent when
the graph is regular, i.e., when each vertex has the same number of neighbors.
If the graph is irregular, however, the quantum walks evolve differently. In
this paper, we show that for some irregular graphs, if the particle is
initially localized at a certain vertex, the probability distributions of the
two quantum walks are identical, even though the amplitudes differ. We
analytically prove this for a graph with five vertices and a graph with six
vertices. By simulating the walks on all 1,018,689,568 simple, connected,
irregular graphs with eleven vertices or less, we found sixty-four graphs with
this notion of equivalence. We also give eight infinite families of graphs
supporting these equivalent walks.
Related papers
- Global Phase Helps in Quantum Search: Yet Another Look at the Welded Tree Problem [55.80819771134007]
In this paper, we give a short proof of the optimal linear hitting time for a welded tree problem by a discrete-time quantum walk.
The same technique can be applied to other 1-dimensional hierarchical graphs.
arXiv Detail & Related papers (2024-04-30T11:45:49Z) - Limits, approximation and size transferability for GNNs on sparse graphs
via graphops [44.02161831977037]
We take a perspective of taking limits of operators derived from graphs, such as the aggregation operation that makes up GNNs.
Our results hold for dense and sparse graphs, and various notions of graph limits.
arXiv Detail & Related papers (2023-06-07T15:04:58Z) - The Exact Class of Graph Functions Generated by Graph Neural Networks [43.25172578943894]
Graph Neural Network (GNN) whose output is identical to the graph function?
In this paper, we fully answer this question and characterize the class of graph problems that can be represented by GNNs.
We show that this condition can be efficiently verified by checking quadratically many constraints.
arXiv Detail & Related papers (2022-02-17T18:54:27Z) - Application of graph theory in quantum computer science [0.0]
We demonstrate that the continuous-time quantum walk models remain powerful for nontrivial graph structures.
The quantum spatial search defined through CTQW has been proven to work well on various undirected graphs.
In the scope of this aspect we analyze, whether quantum speed-up is observed for complicated graph structures as well.
arXiv Detail & Related papers (2021-09-27T12:07:25Z) - Perfect State Transfer in Weighted Cubelike Graphs [0.0]
A continuous-time quantum random walk describes the motion of a quantum mechanical particle on a graph.
We generalize the PST or periodicity of cubelike graphs to that of weighted cubelike graphs.
arXiv Detail & Related papers (2021-09-26T13:44:44Z) - Simplifying Continuous-Time Quantum Walks on Dynamic Graphs [0.0]
A continuous-time quantum walk on a dynamic graph evolves by Schr"odinger's equation with a sequence of Hamiltonians encoding the edges of the graph.
In this paper, we give six scenarios under which a dynamic graph can be simplified.
arXiv Detail & Related papers (2021-06-10T19:24:32Z) - A Thorough View of Exact Inference in Graphs from the Degree-4
Sum-of-Squares Hierarchy [37.34153902687548]
We tackle the problem of exactly recovering an unknown ground-truth binary labeling of the nodes from a single corrupted observation of each edge.
We apply a hierarchy of relaxations known as the sum-of-squares hierarchy, to the problem.
We show that the solution of the dual of the relaxed problem is related to finding edge weights of the Johnson and Kneser graphs.
arXiv Detail & Related papers (2021-02-16T08:36:19Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - Continuous-time quantum walks in the presence of a quadratic
perturbation [55.41644538483948]
We address the properties of continuous-time quantum walks with Hamiltonians of the form $mathcalH= L + lambda L2$.
We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry.
arXiv Detail & Related papers (2020-05-13T14:53:36Z) - Analysis of Lackadaisical Quantum Walks [0.0]
The lackadaisical quantum walk is a quantum analogue of the lazy random walk obtained by adding a self-loop to each.
We analytically prove that lackadaisical quantum walks can find a unique marked.
vertebrae on any regular locally arc-transitive graph with constant success probability.
quadratically faster than the hitting time.
arXiv Detail & Related papers (2020-02-26T00:40:25Z) - Search on Vertex-Transitive Graphs by Lackadaisical Quantum Walk [0.0]
The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph.
It can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph.
We present a number of numerical simulations supporting this hypothesis.
arXiv Detail & Related papers (2020-02-26T00:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.