Simplifying Continuous-Time Quantum Walks on Dynamic Graphs
- URL: http://arxiv.org/abs/2106.06015v2
- Date: Mon, 3 Jan 2022 19:58:21 GMT
- Title: Simplifying Continuous-Time Quantum Walks on Dynamic Graphs
- Authors: Rebekah Herrman, Thomas G. Wong
- Abstract summary: A continuous-time quantum walk on a dynamic graph evolves by Schr"odinger's equation with a sequence of Hamiltonians encoding the edges of the graph.
In this paper, we give six scenarios under which a dynamic graph can be simplified.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A continuous-time quantum walk on a dynamic graph evolves by Schr\"odinger's
equation with a sequence of Hamiltonians encoding the edges of the graph. This
process is universal for quantum computing, but in general, the dynamic graph
that implements a quantum circuit can be quite complicated. In this paper, we
give six scenarios under which a dynamic graph can be simplified, and they
exploit commuting graphs, identical graphs, perfect state transfer,
complementary graphs, isolated vertices, and uniform mixing on the hypercube.
As examples, we simplify dynamic graphs, in some instances allowing
single-qubit gates to be implemented in parallel.
Related papers
- Exponential speedups for quantum walks in random hierarchical graphs [8.984888893275713]
We show how to generalize the use of quantum walks to a class of hierarchical graphs.
The hitting times of quantum walks on these graphs are related to the localization properties of zero modes in certain disordered tight binding Hamiltonians.
arXiv Detail & Related papers (2023-07-27T17:59:58Z) - Graph Mixup with Soft Alignments [49.61520432554505]
We study graph data augmentation by mixup, which has been used successfully on images.
We propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments.
arXiv Detail & Related papers (2023-06-11T22:04:28Z) - Quantum versus Population Dynamics over Cayley Graphs [0.0]
We show that a specific decoration of the original graph enables an exact mapping between the models of population and quantum dynamics.
As such, population dynamics over graphs is yet another classical platform that can simulate quantum effects.
arXiv Detail & Related papers (2022-11-13T15:28:20Z) - A convergence time of Grover walk on regular graph to stationary state [0.0]
We consider a quantum walk model on a finite graph which has an interaction with the outside.
We show that larger degree of the regular graph makes the convergence speed of this quantum walk model slower.
arXiv Detail & Related papers (2022-10-16T02:57:33Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Application of graph theory in quantum computer science [0.0]
We demonstrate that the continuous-time quantum walk models remain powerful for nontrivial graph structures.
The quantum spatial search defined through CTQW has been proven to work well on various undirected graphs.
In the scope of this aspect we analyze, whether quantum speed-up is observed for complicated graph structures as well.
arXiv Detail & Related papers (2021-09-27T12:07:25Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Equivalent Laplacian and Adjacency Quantum Walks on Irregular Graphs [0.0]
The continuous-time quantum walk is a particle evolving by Schr"odinger's equation in discrete space.
In some physical systems, however, the Hamiltonian is proportional to the adjacency matrix instead.
arXiv Detail & Related papers (2021-07-12T16:59:06Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Continuous-time quantum walks in the presence of a quadratic
perturbation [55.41644538483948]
We address the properties of continuous-time quantum walks with Hamiltonians of the form $mathcalH= L + lambda L2$.
We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry.
arXiv Detail & Related papers (2020-05-13T14:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.