論文の概要: Using Causal Analysis for Conceptual Deep Learning Explanation
- arxiv url: http://arxiv.org/abs/2107.06098v1
- Date: Sat, 10 Jul 2021 00:01:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 14:51:58.634205
- Title: Using Causal Analysis for Conceptual Deep Learning Explanation
- Title(参考訳): 因果分析を用いた概念的深層学習説明
- Authors: Sumedha Singla, Stephen Wallace, Sofia Triantafillou, Kayhan
Batmanghelich
- Abstract要約: 理想的な説明はドメインエキスパートの意思決定プロセスに似ている。
胸部X線像を伴って放射線検査を行い,概念を定義した。
我々は、発見されたすべての概念を簡単な決定規則に変換するために、低深度決定木を構築します。
- 参考スコア(独自算出の注目度): 11.552000005640203
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Model explainability is essential for the creation of trustworthy Machine
Learning models in healthcare. An ideal explanation resembles the
decision-making process of a domain expert and is expressed using concepts or
terminology that is meaningful to the clinicians. To provide such an
explanation, we first associate the hidden units of the classifier to
clinically relevant concepts. We take advantage of radiology reports
accompanying the chest X-ray images to define concepts. We discover sparse
associations between concepts and hidden units using a linear sparse logistic
regression. To ensure that the identified units truly influence the
classifier's outcome, we adopt tools from Causal Inference literature and, more
specifically, mediation analysis through counterfactual interventions. Finally,
we construct a low-depth decision tree to translate all the discovered concepts
into a straightforward decision rule, expressed to the radiologist. We
evaluated our approach on a large chest x-ray dataset, where our model produces
a global explanation consistent with clinical knowledge.
- Abstract(参考訳): モデル説明責任は、医療における信頼できる機械学習モデルの作成に不可欠である。
理想的な説明はドメインエキスパートの意思決定プロセスに似ており、臨床医にとって意味のある概念や用語を用いて表現される。
このような説明を提供するため、まず分類器の隠れた単位を臨床的に関連する概念に関連付ける。
胸部X線画像に付随する放射線学報告を利用して概念を定義した。
線形スパースロジスティック回帰法を用いて,概念と隠れ単位の疎結合を発見する。
同定された単位が分類器の結果に真に影響を及ぼすようにするために、因果推論文献およびより具体的には、反事実的介入による仲介分析のツールを採用する。
最後に, 放射線学者に表現されたすべての概念を簡単な決定規則に変換するために, 低深度決定木を構築した。
臨床知識と整合した世界的説明が得られた胸部X線データセットを用いて,我々のアプローチを評価した。
関連論文リスト
- Aligning Characteristic Descriptors with Images for Human-Expert-like Explainability [0.0]
法執行機関や医療診断のようなミッションクリティカルな領域では、ディープラーニングモデルのアウトプットを説明・解釈する能力が不可欠である。
本稿では,特徴記述子を用いたモデル決定手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T15:47:18Z) - Explaining Chest X-ray Pathology Models using Textual Concepts [9.67960010121851]
胸部X線(CoCoX)に対する概念的対実的説明法を提案する。
我々は既存の視覚言語モデル(VLM)の結合埋め込み空間を利用して、注釈付きデータセットを必要とせずにブラックボックス分類結果を説明する。
本稿では,本手法が生み出す説明が意味論的に意味を持ち,根底にある病理に忠実であることを示す。
論文 参考訳(メタデータ) (2024-06-30T01:31:54Z) - Aligning Human Knowledge with Visual Concepts Towards Explainable Medical Image Classification [8.382606243533942]
本稿では,説明可能な言語インフォームド基準に基づく診断に向けて,シンプルで効果的なフレームワークであるExplicdを紹介した。
事前訓練された視覚言語モデルを活用することで、Explicdはこれらの基準を知識アンカーとして埋め込み空間に注入する。
最終的な診断結果は、符号化された視覚概念とテキストの基準埋め込みとの類似度スコアに基づいて決定される。
論文 参考訳(メタデータ) (2024-06-08T23:23:28Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Investigating the Role of Centering Theory in the Context of Neural
Coreference Resolution Systems [71.57556446474486]
中心化理論と現代のコア参照分解システムとの関係について検討する。
高品質なニューラルコア参照リゾルバは、中心となるアイデアを明示的にモデル化することの恩恵を受けない可能性がある。
また, 再発をモデルとしたCTのバージョンを定式化し, バニラCTよりも良質なコア参照情報を取得することを示した。
論文 参考訳(メタデータ) (2022-10-26T12:55:26Z) - Interpretable Vertebral Fracture Diagnosis [69.68641439851777]
ブラックボックスニューラルネットワークモデルは、骨折診断のための臨床的に関連する特徴を学習する。
この研究は、CT画像における脊椎骨折の診断にネットワークが使用する概念を特定する。
論文 参考訳(メタデータ) (2022-03-30T13:07:41Z) - ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis
of Skin Lesions [4.886872847478552]
ExAID(Explainable AI for Dermatology)は、バイオメディカル画像解析のための新しいフレームワークである。
マルチモーダルな概念に基づく説明を提供する。
他の生体イメージング分野でも同様の応用の基盤となるだろう。
論文 参考訳(メタデータ) (2022-01-04T17:11:28Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。