Scalable Surface Reconstruction with Delaunay-Graph Neural Networks
- URL: http://arxiv.org/abs/2107.06130v2
- Date: Thu, 15 Jul 2021 16:01:59 GMT
- Title: Scalable Surface Reconstruction with Delaunay-Graph Neural Networks
- Authors: Raphael Sulzer, Loic Landrieu, Renaud Marlet, Bruno Vallet
- Abstract summary: We introduce a novel learning-based, visibility-aware, surface reconstruction method for large-scale, defect-laden point clouds.
Our approach can cope with the scale and variety of point cloud defects encountered in real-life Multi-View Stereo (MVS) acquisitions.
- Score: 14.128976778330474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel learning-based, visibility-aware, surface reconstruction
method for large-scale, defect-laden point clouds. Our approach can cope with
the scale and variety of point cloud defects encountered in real-life
Multi-View Stereo (MVS) acquisitions. Our method relies on a 3D Delaunay
tetrahedralization whose cells are classified as inside or outside the surface
by a graph neural network and an energy model solvable with a graph cut. Our
model, making use of both local geometric attributes and line-of-sight
visibility information, is able to learn a visibility model from a small amount
of synthetic training data and generalizes to real-life acquisitions. Combining
the efficiency of deep learning methods and the scalability of energy based
models, our approach outperforms both learning and non learning-based
reconstruction algorithms on two publicly available reconstruction benchmarks.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds [6.69660410213287]
We propose an innovative framework called Point-MGE to explore the benefits of deeply integrating 3D representation learning and generative learning.
In shape classification, Point-MGE achieved an accuracy of 94.2% (+1.0%) on the ModelNet40 dataset and 92.9% (+5.5%) on the ScanObjectNN dataset.
Experimental results also confirmed that Point-MGE can generate high-quality 3D shapes in both unconditional and conditional settings.
arXiv Detail & Related papers (2024-06-25T07:57:03Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Dynamic Point Fields [30.029872787758705]
We present a dynamic point field model that combines the representational benefits of explicit point-based graphics with implicit deformation networks.
We show the advantages of our dynamic point field framework in terms of its representational power, learning efficiency, and robustness to out-of-distribution novel poses.
arXiv Detail & Related papers (2023-04-05T17:52:37Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
We show how to explore high-dimensional landscape characteristics of neural networks.
We generalize observations on small neural networks to more complex systems.
An interactive dashboard opens up a number of possible application networks.
arXiv Detail & Related papers (2022-04-09T16:41:53Z) - Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds
of Large Scenes with Learned Virtual View Visibility [17.929307870456416]
We present a novel framework for mesh reconstruction from unstructured point clouds.
We take advantage of the learned visibility of the 3D points in the virtual views and traditional graph-cut based mesh generation.
arXiv Detail & Related papers (2021-08-18T20:28:16Z) - Extracting Global Dynamics of Loss Landscape in Deep Learning Models [0.0]
We present a toolkit for the Dynamical Organization Of Deep Learning Loss Landscapes, or DOODL3.
DOODL3 formulates the training of neural networks as a dynamical system, analyzes the learning process, and presents an interpretable global view of trajectories in the loss landscape.
arXiv Detail & Related papers (2021-06-14T18:07:05Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z) - Model-inspired Deep Learning for Light-Field Microscopy with Application
to Neuron Localization [27.247818386065894]
We propose a model-inspired deep learning approach to perform fast and robust 3D localization of sources using light-field microscopy images.
This is achieved by developing a deep network that efficiently solves a convolutional sparse coding problem.
Experiments on localization of mammalian neurons from light-fields show that the proposed approach simultaneously provides enhanced performance, interpretability and efficiency.
arXiv Detail & Related papers (2021-03-10T16:24:47Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.