Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds
of Large Scenes with Learned Virtual View Visibility
- URL: http://arxiv.org/abs/2108.08378v1
- Date: Wed, 18 Aug 2021 20:28:16 GMT
- Title: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds
of Large Scenes with Learned Virtual View Visibility
- Authors: Shuang Song, Zhaopeng Cui and Rongjun Qin
- Abstract summary: We present a novel framework for mesh reconstruction from unstructured point clouds.
We take advantage of the learned visibility of the 3D points in the virtual views and traditional graph-cut based mesh generation.
- Score: 17.929307870456416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel framework for mesh reconstruction from unstructured point
clouds by taking advantage of the learned visibility of the 3D points in the
virtual views and traditional graph-cut based mesh generation. Specifically, we
first propose a three-step network that explicitly employs depth completion for
visibility prediction. Then the visibility information of multiple views is
aggregated to generate a 3D mesh model by solving an optimization problem
considering visibility in which a novel adaptive visibility weighting in
surface determination is also introduced to suppress line of sight with a large
incident angle. Compared to other learning-based approaches, our pipeline only
exercises the learning on a 2D binary classification task, \ie, points visible
or not in a view, which is much more generalizable and practically more
efficient and capable to deal with a large number of points. Experiments
demonstrate that our method with favorable transferability and robustness, and
achieve competing performances \wrt state-of-the-art learning-based approaches
on small complex objects and outperforms on large indoor and outdoor scenes.
Code is available at https://github.com/GDAOSU/vis2mesh.
Related papers
- HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
We present a hybrid-view-based knowledge distillation framework, termed HVDistill, to guide the feature learning of a point cloud neural network.
Our method achieves consistent improvements over the baseline trained from scratch and significantly out- performs the existing schemes.
arXiv Detail & Related papers (2024-03-18T14:18:08Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Cross-Modal Information-Guided Network using Contrastive Learning for
Point Cloud Registration [17.420425069785946]
We present a novel Cross-Modal Information-Guided Network (CMIGNet) for point cloud registration.
We first incorporate the projected images from the point clouds and fuse the cross-modal features using the attention mechanism.
We employ two contrastive learning strategies, namely overlapping contrastive learning and cross-modal contrastive learning.
arXiv Detail & Related papers (2023-11-02T12:56:47Z) - Rethinking Range View Representation for LiDAR Segmentation [66.73116059734788]
"Many-to-one" mapping, semantic incoherence, and shape deformation are possible impediments against effective learning from range view projections.
We present RangeFormer, a full-cycle framework comprising novel designs across network architecture, data augmentation, and post-processing.
We show that, for the first time, a range view method is able to surpass the point, voxel, and multi-view fusion counterparts in the competing LiDAR semantic and panoptic segmentation benchmarks.
arXiv Detail & Related papers (2023-03-09T16:13:27Z) - PointVST: Self-Supervised Pre-training for 3D Point Clouds via
View-Specific Point-to-Image Translation [64.858505571083]
This paper proposes a translative pre-training framework, namely PointVST.
It is driven by a novel self-supervised pretext task of cross-modal translation from 3D point clouds to their corresponding diverse forms of 2D rendered images.
arXiv Detail & Related papers (2022-12-29T07:03:29Z) - CVFNet: Real-time 3D Object Detection by Learning Cross View Features [11.402076835949824]
We present a real-time view-based single stage 3D object detector, namely CVFNet.
We first propose a novel Point-Range feature fusion module that deeply integrates point and range view features in multiple stages.
Then, a special Slice Pillar is designed to well maintain the 3D geometry when transforming the obtained deep point-view features into bird's eye view.
arXiv Detail & Related papers (2022-03-13T06:23:18Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
We introduce the concept of the multi-view point cloud (Voint cloud) representing each 3D point as a set of features extracted from several view-points.
This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation.
We deploy a Voint neural network (VointNet) with a theoretically established functional form to learn representations in the Voint space.
arXiv Detail & Related papers (2021-11-30T13:08:19Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
arXiv Detail & Related papers (2020-04-26T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.