Random Matrices and Quantum Hamilton-Jacobi Method
- URL: http://arxiv.org/abs/2107.06494v1
- Date: Wed, 14 Jul 2021 05:45:44 GMT
- Title: Random Matrices and Quantum Hamilton-Jacobi Method
- Authors: K. Haritha and K.V.S.Shiv Chaitanya
- Abstract summary: We show that the underlying complex pole evolution of the Schr"odinger equation is described by the quantum action in terms of a random matrix.
The wave function is given by the random matrix probability distribution function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we start with the quantum Hamilton-Jacobi approach and show
that the underlying complex pole evolution of the Schr\"odinger equation is
described by the quantum action in terms of a random matrix. The wave function
is given by the random matrix probability distribution function. In literature
this is known as the famous Cole-Hopf Transformation.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - A dynamic programming interpretation of quantum mechanics [0.0]
We introduce a transformation of the quantum phase $S'=S+frachbar2logrho$, which converts the deterministic equations of quantum mechanics into the Lagrangian reference frame of particles.
We show that the quantum potential can be removed from the transformed quantum Hamilton-Jacobi equations if they are solved as Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-08T18:43:40Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Quantum-embeddable stochastic matrices [2.038893829552158]
We investigate the quantum version of the classical embeddability problem.
We show that a larger set of transition matrices can be explained by memoryless models.
We also identify a non-zero measure set of random processes that cannot be explained by either classical or quantum memoryless dynamics.
arXiv Detail & Related papers (2023-05-26T18:00:02Z) - Cutoff phenomenon and entropic uncertainty for random quantum circuits [0.0]
How fast a state of a system converges to a stationary state is one of the fundamental questions in science.
Some Markov chains and random walks on finite groups are known to exhibit the non-asymptotic convergence to a stationary distribution.
We show how quickly a random quantum circuit could transform a quantum state to a Haar-measure random quantum state.
arXiv Detail & Related papers (2023-05-20T03:33:48Z) - Quantum entanglement without superposition [0.0]
Superposition states are at the origin of many paradoxes in quantum mechanics.
quantum jumps are a key feature of this approach, in blatant contrast with the continuity of the deterministic Schr"odinger equation.
arXiv Detail & Related papers (2022-12-09T13:56:35Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Taking snapshots of a quantum thermalization process: emergent
classicality in quantum jump trajectories [0.0]
We show via a random matrix theory approach to nonintegrable quantum systems that the set of outcomes of the measurement of a macroscopic observable evolve in time like variables.
Our results show how to extend the framework of eigenstate thermalization to the prediction of properties of quantum measurements on an otherwise closed quantum system.
arXiv Detail & Related papers (2020-03-18T18:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.