Quantum entanglement without superposition
- URL: http://arxiv.org/abs/2212.04857v1
- Date: Fri, 9 Dec 2022 13:56:35 GMT
- Title: Quantum entanglement without superposition
- Authors: Hans Christian \"Ottinger
- Abstract summary: Superposition states are at the origin of many paradoxes in quantum mechanics.
quantum jumps are a key feature of this approach, in blatant contrast with the continuity of the deterministic Schr"odinger equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superposition states are at the origin of many paradoxes in quantum
mechanics. By unraveling the von Neumann equation for density matrices, we
develop a superposition-free formulation of quantum mechanics. Stochastic
quantum jumps are a key feature of this approach, in blatant contrast with the
continuity of the deterministic Schr\"odinger equation. We explain how quantum
entanglement arises. Our superposition-free formulation results offers a new
perspective on quantum mechanics.
Related papers
- Quantum decoherence from complex saddle points [0.0]
Quantum decoherence is the effect that bridges quantum physics to classical physics.
We present some first-principle calculations in the Caldeira-Leggett model.
We also discuss how to extend our work to general models by Monte Carlo calculations.
arXiv Detail & Related papers (2024-08-29T15:35:25Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - The Universe as a Learning System [0.0]
We propose that under general requirements, quantum systems follow a disrupted version of the gradient descent model.
Such a learning process is possible only when we assume dissipation, i.e., that the quantum system is open.
arXiv Detail & Related papers (2024-02-22T10:11:51Z) - Entropic Quantum Central Limit Theorem and Quantum Inverse Sumset
Theorem [0.0]
We establish an entropic, quantum central limit theorem and quantum inverse sumset theorem in discrete-variable quantum systems.
A byproduct of this work is a magic measure to quantify the nonstabilizer nature of a state, based on the quantum Ruzsa divergence.
arXiv Detail & Related papers (2024-01-25T18:43:24Z) - Quantizing the Quantum Uncertainty [0.0]
We discuss the quantization of the quantum uncertainty as an operator acting on wave-functions over field space.
We show how this spectrum appears in the value of the coupling of the effective conformal potential driving the evolution of extended Gaussian wave-packets.
We conclude with an open question: is it possible to see experimental signatures of the quantization of the quantum uncertainty in non-relativistic physics?
arXiv Detail & Related papers (2023-07-03T14:40:14Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum Entanglement of Free Particles [0.0]
The Schrodinger equation is solved for many free particles and their quantum entanglement is studied via correlation analysis.
The quantum mechanics is extended to open quantum systems by adding Ohmic friction forces.
arXiv Detail & Related papers (2021-06-17T10:18:20Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - The Quantum Wasserstein Distance of Order 1 [16.029406401970167]
We propose a generalization of the Wasserstein distance of order 1 to the quantum states of $n$ qudits.
The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit.
We also propose a generalization of the Lipschitz constant to quantum observables.
arXiv Detail & Related papers (2020-09-09T18:00:01Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.