Self-Supervised Multi-Modal Alignment for Whole Body Medical Imaging
- URL: http://arxiv.org/abs/2107.06652v1
- Date: Wed, 14 Jul 2021 12:35:05 GMT
- Title: Self-Supervised Multi-Modal Alignment for Whole Body Medical Imaging
- Authors: Rhydian Windsor, Amir Jamaludin, Timor Kadir, Andrew Zisserman
- Abstract summary: We use a dataset of over 20,000 subjects from the UK Biobank with both whole body Dixon technique magnetic resonance (MR) scans and also dual-energy x-ray absorptiometry (DXA) scans.
We introduce a multi-modal image-matching contrastive framework, that is able to learn to match different-modality scans of the same subject with high accuracy.
Without any adaption, we show that the correspondences learnt during this contrastive training step can be used to perform automatic cross-modal scan registration.
- Score: 70.52819168140113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the use of self-supervised deep learning in medical
imaging in cases where two scan modalities are available for the same subject.
Specifically, we use a large publicly-available dataset of over 20,000 subjects
from the UK Biobank with both whole body Dixon technique magnetic resonance
(MR) scans and also dual-energy x-ray absorptiometry (DXA) scans. We make three
contributions: (i) We introduce a multi-modal image-matching contrastive
framework, that is able to learn to match different-modality scans of the same
subject with high accuracy. (ii) Without any adaption, we show that the
correspondences learnt during this contrastive training step can be used to
perform automatic cross-modal scan registration in a completely unsupervised
manner. (iii) Finally, we use these registrations to transfer segmentation maps
from the DXA scans to the MR scans where they are used to train a network to
segment anatomical regions without requiring ground-truth MR examples. To aid
further research, our code will be made publicly available.
Related papers
- Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - X-ray2CTPA: Generating 3D CTPA scans from 2D X-ray conditioning [24.233484690096898]
Chest X-rays or chest radiography (CXR) enables limited imaging compared to computed tomography (CT) scans.
CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs.
In this work we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolutionA scan.
arXiv Detail & Related papers (2024-06-23T13:53:35Z) - Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance
from High-Quality Isotropic Volumes [52.242103848335354]
We propose a novel Cycle-Consistent Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge learned from high-quality isotropic volumes for accurate tissue segmentation of thick-slice scans.
Our C2DA-Net can fully utilize a small set of annotated isotropic volumes to guide tissue segmentation on unannotated thick-slice scans.
arXiv Detail & Related papers (2023-08-13T12:51:15Z) - Cross Modality 3D Navigation Using Reinforcement Learning and Neural
Style Transfer [3.0152753984876854]
This paper presents the use of Multi-Agent Reinforcement Learning (MARL) to perform navigation in 3D anatomical volumes from medical imaging.
We utilize Neural Style Transfer to create synthetic Computed Tomography (CT) agent gym environments.
Our framework does not require any labelled clinical data and integrates easily with several image translation techniques.
arXiv Detail & Related papers (2021-11-05T13:11:45Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Studying Robustness of Semantic Segmentation under Domain Shift in
cardiac MRI [0.8858288982748155]
We study challenges and opportunities of domain transfer across images from multiple clinical centres and scanner vendors.
In this work, we build upon a fixed U-Net architecture configured by the nnU-net framework to investigate various data augmentation techniques and batch normalization layers.
arXiv Detail & Related papers (2020-11-15T17:50:23Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z) - Self-Supervised Ultrasound to MRI Fetal Brain Image Synthesis [20.53251934808636]
Fetal brain magnetic resonance imaging (MRI) offers exquisite images of the developing brain but is not suitable for second-trimester anomaly screening.
In this paper we propose to generate MR-like images directly from clinical US images.
The proposed model is end-to-end trainable and self-supervised without any external annotations.
arXiv Detail & Related papers (2020-08-19T22:56:36Z) - Groupwise Multimodal Image Registration using Joint Total Variation [0.0]
We introduce a cost function based on joint total variation for such multimodal image registration.
We evaluate our algorithm on rigidly aligning both simulated and real 3D brain scans.
arXiv Detail & Related papers (2020-05-06T16:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.