X-ray2CTPA: Generating 3D CTPA scans from 2D X-ray conditioning
- URL: http://arxiv.org/abs/2406.16109v3
- Date: Fri, 12 Jul 2024 06:18:13 GMT
- Title: X-ray2CTPA: Generating 3D CTPA scans from 2D X-ray conditioning
- Authors: Noa Cahan, Eyal Klang, Galit Aviram, Yiftach Barash, Eli Konen, Raja Giryes, Hayit Greenspan,
- Abstract summary: Chest X-rays or chest radiography (CXR) enables limited imaging compared to computed tomography (CT) scans.
CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs.
In this work we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolutionA scan.
- Score: 24.233484690096898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest X-rays or chest radiography (CXR), commonly used for medical diagnostics, typically enables limited imaging compared to computed tomography (CT) scans, which offer more detailed and accurate three-dimensional data, particularly contrast-enhanced scans like CT Pulmonary Angiography (CTPA). However, CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs. In this work we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolution CTPA scan. Driven by recent advances in generative AI, we introduce a novel diffusion-based approach to this task. We evaluate the models performance using both quantitative metrics and qualitative feedback from radiologists, ensuring diagnostic relevance of the generated images. Furthermore, we employ the synthesized 3D images in a classification framework and show improved AUC in a PE categorization task, using the initial CXR input. The proposed method is generalizable and capable of performing additional cross-modality translations in medical imaging. It may pave the way for more accessible and cost-effective advanced diagnostic tools. The code for this project is available: https://github.com/NoaCahan/X-ray2CTPA .
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
We propose DiffuX2CT, which models CT reconstruction from ultra-sparse X-rays as a conditional diffusion process.
By doing so, DiffuX2CT achieves structure-controllable reconstruction, which enables 3D structural information to be recovered from 2D X-rays.
As an extra contribution, we collect a real-world lumbar CT dataset, called LumbarV, as a new benchmark to verify the clinical significance and performance of CT reconstruction from X-rays.
arXiv Detail & Related papers (2024-07-18T14:20:04Z) - Multi-view X-ray Image Synthesis with Multiple Domain Disentanglement from CT Scans [10.72672892416061]
Over-dosed X-rays superimpose potential risks to human health to some extent.
Data-driven algorithms from volume scans to X-ray images are restricted by the scarcity of paired X-ray and volume data.
We propose CT2X-GAN to synthesize the X-ray images in an end-to-end manner using the content and style disentanglement from three different image domains.
arXiv Detail & Related papers (2024-04-18T04:25:56Z) - Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis [88.86777314004044]
We propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view visualization.
Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed.
arXiv Detail & Related papers (2024-03-07T00:12:08Z) - SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven
Generative Adversarial Networks [6.624839896733912]
This paper presents a new self-driven generative adversarial network model (SdCT-GAN) for reconstruction of 3D CT images.
It is motivated to pay more attention to image details by introducing a novel auto-encoder structure in the discriminator.
LPIPS evaluation metric is adopted that can quantitatively evaluate the fine contours and textures of reconstructed images better than the existing ones.
arXiv Detail & Related papers (2023-09-10T08:16:02Z) - Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays [32.98966469644061]
We propose PerX2CT, a novel CT reconstruction framework from X-ray.
Our proposed method provides a different combination of features for each coordinate which implicitly allows the model to obtain information about the 3D location.
arXiv Detail & Related papers (2023-03-09T14:45:25Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
Excessive ionising radiation can lead to deterministic and harmful effects on the body.
This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray.
arXiv Detail & Related papers (2022-02-02T13:25:23Z) - Self-Supervised Multi-Modal Alignment for Whole Body Medical Imaging [70.52819168140113]
We use a dataset of over 20,000 subjects from the UK Biobank with both whole body Dixon technique magnetic resonance (MR) scans and also dual-energy x-ray absorptiometry (DXA) scans.
We introduce a multi-modal image-matching contrastive framework, that is able to learn to match different-modality scans of the same subject with high accuracy.
Without any adaption, we show that the correspondences learnt during this contrastive training step can be used to perform automatic cross-modal scan registration.
arXiv Detail & Related papers (2021-07-14T12:35:05Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.