論文の概要: Uncertainty Modeling of Emerging Device-based Computing-in-Memory Neural
Accelerators with Application to Neural Architecture Search
- arxiv url: http://arxiv.org/abs/2107.06871v1
- Date: Tue, 6 Jul 2021 23:29:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 13:56:08.487569
- Title: Uncertainty Modeling of Emerging Device-based Computing-in-Memory Neural
Accelerators with Application to Neural Architecture Search
- Title(参考訳): 新興デバイス・インメモリ・ニューラル・アクセラレーターの不確実性モデリングとニューラル・アーキテクチャ・サーチへの応用
- Authors: Zheyu Yan, Da-Cheng Juan, Xiaobo Sharon Hu, Yiyu Shi
- Abstract要約: 新興デバイスベースのコンピューティングインメモリ(CiM)は、高エネルギー効率ディープニューラルネットワーク(DNN)計算において有望な候補であることが証明されている。
ほとんどの新興デバイスは不確実な問題に悩まされており、結果として、保存される実際のデータと、それが設計される重み付け値との違いが生じる。
これにより、トレーニングされたモデルから実際にデプロイされたプラットフォームへの精度低下につながる。
- 参考スコア(独自算出の注目度): 25.841113960607334
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Emerging device-based Computing-in-memory (CiM) has been proved to be a
promising candidate for high-energy efficiency deep neural network (DNN)
computations. However, most emerging devices suffer uncertainty issues,
resulting in a difference between actual data stored and the weight value it is
designed to be. This leads to an accuracy drop from trained models to actually
deployed platforms. In this work, we offer a thorough analysis of the effect of
such uncertainties-induced changes in DNN models. To reduce the impact of
device uncertainties, we propose UAE, an uncertainty-aware Neural Architecture
Search scheme to identify a DNN model that is both accurate and robust against
device uncertainties.
- Abstract(参考訳): 新興デバイスベースのコンピューティングインメモリ(CiM)は、高エネルギー効率ディープニューラルネットワーク(DNN)計算において有望な候補であることが証明されている。
しかし、殆どの新興デバイスは不確実性に苦しんでおり、実際のデータとそれが設計される重み値の差が生じている。
これにより、トレーニングされたモデルから実際にデプロイされたプラットフォームに精度が低下する。
本研究では,DNNモデルにおける不確実性による変化の影響を詳細に分析する。
デバイス不確実性の影響を低減するため,デバイス不確実性に対して正確かつ堅牢なDNNモデルを特定するための不確実性を考慮したニューラルネットワーク探索手法であるUAEを提案する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
深層生成学習は、特定のMLモデルを使用して、既存のデータの基盤となる分布を学習し、実際のデータに似た合成サンプルを生成する。
本研究では,変分オートエンコーダ(VAE)を用いた深部生成モデルを用いて,データ拡張の有効性を評価することを目的とする。
本研究では,拡張データを用いてトレーニングしたディープニューラルネットワーク(DNN)モデルの予測において,データ拡張が精度の向上につながるかどうかを検討した。
論文 参考訳(メタデータ) (2024-10-24T18:15:48Z) - Compute-in-Memory based Neural Network Accelerators for Safety-Critical
Systems: Worst-Case Scenarios and Protections [8.813981342105151]
本稿では,CiM加速器の最悪の性能をデバイス変動の影響で特定する問題について検討する。
本稿では,対向訓練とノイズ注入訓練を効果的に組み合わせた,A-TRICEという新たな最悪の事例認識訓練手法を提案する。
実験の結果,A-TRICEは機器の変量下での最悪のケース精度を最大33%向上することがわかった。
論文 参考訳(メタデータ) (2023-12-11T05:56:00Z) - Scale-Dropout: Estimating Uncertainty in Deep Neural Networks Using
Stochastic Scale [0.7025445595542577]
ニューラルネットワーク(NN)の不確実性推定は、特に安全クリティカルなアプリケーションにおいて、予測の信頼性と信頼性を向上させる上で不可欠である。
Dropoutを近似とするBayNNは、不確実性に対する体系的なアプローチを提供するが、本質的には、電力、メモリ、定量化の点で高いハードウェアオーバーヘッドに悩まされている。
提案するBayNNに対して,スピントロニクスメモリベースのCIMアーキテクチャを導入し,最先端技術と比較して100倍以上の省エネを実現した。
論文 参考訳(メタデータ) (2023-11-27T13:41:20Z) - Uncertainty-aware deep learning for digital twin-driven monitoring:
Application to fault detection in power lines [0.0]
ディープニューラルネットワーク(DNN)はしばしば物理ベースのモデルやデータ駆動サロゲートモデルと結合され、低データ状態のシステムの障害検出と健康モニタリングを行う。
これらのモデルは、生成されたデータに伝播するパラメトリック不確実性を示すことができる。
本稿では,これら2つの不確実性源がDNNの性能に与える影響を定量化する。
論文 参考訳(メタデータ) (2023-03-20T09:27:58Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
本稿では,ディープニューラルネットワーク(DNN)の自動検出手法を提案するとともに,アンサンブルに基づく不確実性定量化にも有効であることを示す。
提案手法は,タスクの高パフォーマンスニューラルネットワークアンサンブルを検出するだけでなく,不確実性をシームレスに定量化する。
本研究では, 歴史的データからの予測と, 海面温度のスパースセンサからのフロー再構成という2つの課題に対して, この枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-02-20T03:57:06Z) - Fault-Aware Design and Training to Enhance DNNs Reliability with
Zero-Overhead [67.87678914831477]
ディープニューラルネットワーク(DNN)は、幅広い技術的進歩を可能にする。
最近の知見は、過渡的なハードウェア欠陥がモデル予測を劇的に損なう可能性があることを示唆している。
本研究では,トレーニングとモデル設計の両面で信頼性の問題に取り組むことを提案する。
論文 参考訳(メタデータ) (2022-05-28T13:09:30Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。