論文の概要: DeFed: A Principled Decentralized and Privacy-Preserving Federated
Learning Algorithm
- arxiv url: http://arxiv.org/abs/2107.07171v1
- Date: Thu, 15 Jul 2021 07:39:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 13:47:00.076710
- Title: DeFed: A Principled Decentralized and Privacy-Preserving Federated
Learning Algorithm
- Title(参考訳): DeFed: 原則付き分散型かつプライバシ保護型フェデレーション学習アルゴリズム
- Authors: Ye Yuan, Ruijuan Chen, Chuan Sun, Maolin Wang, Feng Hua, Xinlei Yi,
Tao Yang and Jun Liu
- Abstract要約: フェデレートラーニングは、多数のクライアントが、各クライアントに格納されたトレーニングデータを維持しながら、共有モデル学習に参加することを可能にする。
本稿では、従来のフェデレーション平均化(FedAvg)設定における中心的クライアントを除去する、分散型分散学習アルゴリズム(DeFed)を提案する。
提案アルゴリズムは, 損失関数が滑らかで, 強凸である場合には, 収束率$O(1/T)$で大域的最小値に達することが証明された。
- 参考スコア(独自算出の注目度): 10.487593244018933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning enables a large number of clients to participate in
learning a shared model while maintaining the training data stored in each
client, which protects data privacy and security. Till now, federated learning
frameworks are built in a centralized way, in which a central client is needed
for collecting and distributing information from every other client. This not
only leads to high communication pressure at the central client, but also
renders the central client highly vulnerable to failure and attack. Here we
propose a principled decentralized federated learning algorithm (DeFed), which
removes the central client in the classical Federated Averaging (FedAvg)
setting and only relies information transmission between clients and their
local neighbors. The proposed DeFed algorithm is proven to reach the global
minimum with a convergence rate of $O(1/T)$ when the loss function is smooth
and strongly convex, where $T$ is the number of iterations in gradient descent.
Finally, the proposed algorithm has been applied to a number of toy examples to
demonstrate its effectiveness.
- Abstract(参考訳): フェデレートラーニングにより、多数のクライアントが共有モデル学習に参加しながら、各クライアントに格納されたトレーニングデータを維持し、データのプライバシとセキュリティを保護することができる。
現在、統合学習フレームワークは中央集権的な方法で構築されており、中央のクライアントが他のすべてのクライアントから情報を収集、配布するために必要である。
これにより、中央クライアントの通信プレッシャーが高くなるだけでなく、中央クライアントは障害や攻撃に対して非常に脆弱になる。
本稿では,従来のフェデレーション平均化(FedAvg)設定における中心的クライアントを排除し,クライアントとその周辺住民間の情報伝達のみに依存する分散型フェデレーション学習アルゴリズム(DeFed)を提案する。
提案するdefedアルゴリズムは、損失関数が滑らかで強い凸である場合の収束率o(1/t)$で大域的最小値に達することが証明され、ここでは$t$は勾配降下の反復数である。
最後に,提案アルゴリズムを多数のおもちゃの例に適用し,その有効性を実証した。
関連論文リスト
- Achieving Linear Speedup in Asynchronous Federated Learning with
Heterogeneous Clients [30.135431295658343]
フェデレートラーニング(FL)は、異なるクライアントにローカルに保存されているデータを交換したり転送したりすることなく、共通のグローバルモデルを学ぶことを目的としている。
本稿では,DeFedAvgという,効率的な連邦学習(AFL)フレームワークを提案する。
DeFedAvgは、望まれる線形スピードアップ特性を達成する最初のAFLアルゴリズムであり、高いスケーラビリティを示している。
論文 参考訳(メタデータ) (2024-02-17T05:22:46Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - FedBayes: A Zero-Trust Federated Learning Aggregation to Defend Against
Adversarial Attacks [1.689369173057502]
フェデレートラーニング(Federated Learning)は、クライアントデータに直接アクセスすることなく、マシンラーニングモデルをトレーニングする分散メソッドを開発した。
悪意のあるクライアントは、グローバルモデルを破壊し、フェデレーション内のすべてのクライアントのパフォーマンスを低下させることができる。
新たなアグリゲーション手法であるFedBayesは、クライアントのモデル重みの確率を計算することにより、悪意のあるクライアントの効果を緩和する。
論文 参考訳(メタデータ) (2023-12-04T21:37:50Z) - Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated
Learning [14.196701066823499]
フェデレートラーニング(Federated Learning)では、独立したクライアントノードの集合で計算されたモデル更新を集約することによって、グローバルモデルが学習される。
我々は、個々のクライアントモデルが、他のクライアントのデータに関して破滅的な忘れを経験していることを示します。
本稿では,損失の計算に先立ってソフトマックスのロジットを再重み付けすることで,クロスエントロピーの目標を周期的に修正する効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T14:51:55Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Game of Gradients: Mitigating Irrelevant Clients in Federated Learning [3.2095659532757916]
フェデレートラーニング(FL)は、中央サーバのオーケストレーションの下で、機械学習モデルの協調トレーニングに参加する複数のクライアントを扱う。
この設定では、各クライアントのデータは自身にプライベートであり、他のクライアントやサーバに転送できない。
我々はこれらの問題をFederated Relevant Client Selection (FRCS)と呼ぶ。
論文 参考訳(メタデータ) (2021-10-23T16:34:42Z) - Federated Noisy Client Learning [105.00756772827066]
フェデレートラーニング(FL)は、複数のローカルクライアントに依存する共有グローバルモデルを協調的に集約する。
標準FLメソッドは、集約されたモデル全体のパフォーマンスを損なううるノイズの多いクライアントの問題を無視します。
本稿では,Fed-NCL (Federated Noisy Client Learning) を提案する。
論文 参考訳(メタデータ) (2021-06-24T11:09:17Z) - Decentralized Federated Averaging [17.63112147669365]
Federated Averaging (FedAvg) は、膨大な数のクライアントを持つ分散トレーニングのための通信効率のよいアルゴリズムである。
我々は,非方向性グラフで接続されたクライアントに実装された運動量付き分散FedAvg(DFedAvgM)について検討する。
論文 参考訳(メタデータ) (2021-04-23T02:01:30Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
フェデレートラーニング(FL)にブロックチェーンを統合する新しいフレームワークを提案する。
BLADE-FLは、プライバシー保護、改ざん抵抗、学習の効果的な協力の点で優れたパフォーマンスを持っている。
遅延クライアントは、他人のトレーニングされたモデルを盗聴し、不正行為を隠すために人工的なノイズを加える。
論文 参考訳(メタデータ) (2020-12-02T12:18:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。