論文の概要: Hybrid Ant Swarm-Based Data Clustering
- arxiv url: http://arxiv.org/abs/2107.07382v1
- Date: Sun, 11 Jul 2021 16:43:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 13:48:50.799238
- Title: Hybrid Ant Swarm-Based Data Clustering
- Title(参考訳): ハイブリッドant swarmベースのデータクラスタリング
- Authors: Md Ali Azam, Abir Hossen, Md Hafizur Rahman
- Abstract要約: アリクラスタリングアルゴリズム(ACA)をハイブリッドアリクラスタリングアルゴリズム(hACA)に拡張する。
具体的には, 遺伝的アルゴリズムを標準ACAに組み込んで, ハイブリットアルゴリズムを改良し, 性能を向上する。
また、クラスタリングのパフォーマンスを高速化するために、新しいピックアップとドロップのルールを導入しました。
- 参考スコア(独自算出の注目度): 2.1528321119061693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biologically inspired computing techniques are very effective and useful in
many areas of research including data clustering. Ant clustering algorithm is a
nature-inspired clustering technique which is extensively studied for over two
decades. In this study, we extend the ant clustering algorithm (ACA) to a
hybrid ant clustering algorithm (hACA). Specifically, we include a genetic
algorithm in standard ACA to extend the hybrid algorithm for better
performance. We also introduced novel pick up and drop off rules to speed up
the clustering performance. We study the performance of the hACA algorithm and
compare with standard ACA as a benchmark.
- Abstract(参考訳): 生物学的にインスパイアされたコンピューティング技術は非常に効果的で、データクラスタリングを含む多くの研究で有用である。
アントクラスタリングアルゴリズムは自然に着想を得たクラスタリング手法であり、20年以上にわたって広く研究されてきた。
本研究では,アリクラスタリングアルゴリズム(ACA)をハイブリッドアリクラスタリングアルゴリズム(hACA)に拡張する。
具体的には,遺伝的アルゴリズムを標準ACAに組み込んで,ハイブリットアルゴリズムを高性能に拡張する。
また、クラスタリングのパフォーマンスを高速化するために、新しいピックアップとドロップのルールを導入しました。
本稿では,hACAアルゴリズムの性能について検討し,ベンチマークとして標準ACAと比較する。
関連論文リスト
- A Modular Spatial Clustering Algorithm with Noise Specification [0.0]
細菌ファームアルゴリズムは、閉じた実験農場の細菌の成長にインスパイアされている。
他のクラスタリングアルゴリズムとは対照的に、我々のアルゴリズムはクラスタリング中に除外されるノイズの量を規定する機能も備えている。
論文 参考訳(メタデータ) (2023-09-18T18:05:06Z) - Privacy-preserving Continual Federated Clustering via Adaptive Resonance
Theory [11.190614418770558]
クラスタリング領域では、フェデレーション学習フレームワーク(フェデレーションクラスタリング)を用いた様々なアルゴリズムが活発に研究されている。
本稿では,プライバシ保護型継続フェデレーションクラスタリングアルゴリズムを提案する。
合成および実世界のデータセットによる実験結果から,提案アルゴリズムはクラスタリング性能が優れていることが示された。
論文 参考訳(メタデータ) (2023-09-07T05:45:47Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - GBMST: An Efficient Minimum Spanning Tree Clustering Based on
Granular-Ball Computing [78.92205914422925]
多粒度グラニュラバルと最小スパンニングツリー(MST)を組み合わせたクラスタリングアルゴリズムを提案する。
粒度が粗い粒状ボールを構築し,さらに粒状ボールとMSTを用いて「大規模優先度」に基づくクラスタリング手法を実装した。
いくつかのデータセットの実験結果は、アルゴリズムの威力を示している。
論文 参考訳(メタデータ) (2023-03-02T09:04:35Z) - Genie: A new, fast, and outlier-resistant hierarchical clustering
algorithm [3.7491936479803054]
我々はGenieと呼ばれる新しい階層的クラスタリングリンク基準を提案する。
我々のアルゴリズムは、2つのクラスタを、選択された経済不平等尺度が与えられたしきい値を超えないようにリンクする。
このアルゴリズムのリファレンス実装は、Rのためのオープンソースの'genie'パッケージに含まれている。
論文 参考訳(メタデータ) (2022-09-13T06:42:53Z) - Efficient Approximate Kernel Based Spike Sequence Classification [56.2938724367661]
SVMのような機械学習モデルは、シーケンスのペア間の距離/相似性の定義を必要とする。
厳密な手法により分類性能は向上するが、計算コストが高い。
本稿では,その予測性能を向上させるために,近似カーネルの性能を改善する一連の方法を提案する。
論文 参考訳(メタデータ) (2022-09-11T22:44:19Z) - Exact and Approximate Hierarchical Clustering Using A* [51.187990314731344]
クラスタリングのA*探索に基づく新しいアプローチを紹介します。
A*と新しいエンフォレリスデータ構造を組み合わせることで、禁止的に大きな検索空間を克服します。
実験により,本手法は粒子物理利用事例や他のクラスタリングベンチマークにおいて,ベースラインよりもかなり高品質な結果が得られることを示した。
論文 参考訳(メタデータ) (2021-04-14T18:15:27Z) - Clustering of Big Data with Mixed Features [3.3504365823045044]
我々は混合型の大規模データのための新しいクラスタリングアルゴリズムを開発した。
このアルゴリズムは、比較的低い密度値の外れ値とクラスターを検出することができる。
本研究では,本アルゴリズムが実際に有効であることを示す実験結果を示す。
論文 参考訳(メタデータ) (2020-11-11T19:54:38Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Certifying clusters from sum-of-norms clustering [13.747619681451875]
本稿では,近似解から正しいクラスタ割り当てを同定し,証明するクラスタリングテストを提案する。
提案手法では, クラスタ割り当てが, 十分に多くの繰り返しを経て, 原始二重経路追従アルゴリズムによって保証されることが保証されていることを示す。
論文 参考訳(メタデータ) (2020-06-19T20:26:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。