論文の概要: Assign Hysteresis Parameter For Ericsson BTS Power Saving Algorithm
Using Unsupervised Learning
- arxiv url: http://arxiv.org/abs/2107.07412v1
- Date: Mon, 5 Jul 2021 13:26:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 15:11:37.919786
- Title: Assign Hysteresis Parameter For Ericsson BTS Power Saving Algorithm
Using Unsupervised Learning
- Title(参考訳): 教師なし学習を用いたEricsson BTS省電力アルゴリズムのアサインヒステリシスパラメータ
- Authors: Thaer Sahmoud, Wesam Ashor
- Abstract要約: ガザストリップは、電信分野を含むすべての産業に影響を及ぼす慢性的な電気不足に悩まされている。
我々は,GSM無線周波数技術者がEricsson BTS省電力アルゴリズムのパラメータの最適値を選択するのを支援する新しいモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaza Strip suffers from a chronic electricity deficit that affects all
industries including the telecommunication field, so there is a need to
optimize and reduce power consumption of the telecommunication equipment. In
this paper we propose a new model that helps GSM radio frequency engineers to
choose the optimal value of hysteresis parameter for Ericsson BTS power saving
algorithm which aims to switch OFF unused frequency channels, our model is
based on unsupervised machine learning clustering K-means algorithm. By using
our model with BTS power saving algorithm we reduce number of active TRX by
20.9%.
- Abstract(参考訳): ガザストリップは、電信分野を含むすべての産業に影響を及ぼす慢性的な電気不足に悩まされており、電信機器の電力消費を最適化し削減する必要がある。
本稿では,未使用の周波数チャネルを切り替えることを目的としたEricsson BTS省電力アルゴリズムにおいて,GSM無線周波数エンジニアがヒステリシスパラメータの最適値を選択するのを支援する新しいモデルを提案する。
BTS省電力アルゴリズムを用いたモデルにより,アクティブTRXの数を20.9%削減する。
関連論文リスト
- Predictive Handover Strategy in 6G and Beyond: A Deep and Transfer Learning Approach [11.44410301488549]
本稿では,将来的なサービスセル予測のためのディープラーニングに基づくアルゴリズムを提案する。
我々のフレームワークはO-RAN仕様に準拠しており、Near-Real-Time RAN Intelligent Controllerにデプロイできます。
論文 参考訳(メタデータ) (2024-04-11T20:30:36Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Fine-Grained Data Selection for Improved Energy Efficiency of Federated
Edge Learning [2.924868086534434]
フェデレーションエッジ学習(FEEL)では、ネットワークエッジのエネルギー制約されたデバイスは、ローカル機械学習モデルをトレーニングおよびアップロードする際にかなりのエネルギーを消費する。
本研究は, ローカルトレーニングデータ, 利用可能な計算, 通信資源を共同で検討し, エネルギー効率の高い FEEL の新たなソリューションを提案する。
論文 参考訳(メタデータ) (2021-06-20T10:51:32Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Threshold-Based Data Exclusion Approach for Energy-Efficient Federated
Edge Learning [4.25234252803357]
Federated Edge Learning (FEEL) は次世代無線ネットワークにおいて有望な分散学習技術である。
FEELは、モデルトレーニングラウンド中に消費される電力により、エネルギー制約された参加機器の寿命を大幅に短縮する可能性がある。
本稿では,FEELラウンドにおける計算および通信エネルギー消費を最小化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T13:34:40Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
分散データを収集し、エッジで機械学習を実行するエッジインテリジェンスが提案されている。
本稿では,経験的分類誤差モデルに基づいて無線リソースを割り当てるLCPA法を提案する。
実験の結果,提案したLCPAアルゴリズムは,他のパワーアロケーションアルゴリズムよりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-21T07:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。