High-level Decisions from a Safe Maneuver Catalog with Reinforcement
Learning for Safe and Cooperative Automated Merging
- URL: http://arxiv.org/abs/2107.07413v1
- Date: Thu, 15 Jul 2021 15:49:53 GMT
- Title: High-level Decisions from a Safe Maneuver Catalog with Reinforcement
Learning for Safe and Cooperative Automated Merging
- Authors: Danial Kamran, Yu Ren and Martin Lauer
- Abstract summary: We propose an efficient RL-based decision-making pipeline for safe and cooperative automated driving in merging scenarios.
The proposed RL agent can efficiently identify cooperative drivers from their vehicle state history and generate interactive maneuvers.
- Score: 5.732271870257913
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has recently been used for solving challenging
decision-making problems in the context of automated driving. However, one of
the main drawbacks of the presented RL-based policies is the lack of safety
guarantees, since they strive to reduce the expected number of collisions but
still tolerate them. In this paper, we propose an efficient RL-based
decision-making pipeline for safe and cooperative automated driving in merging
scenarios. The RL agent is able to predict the current situation and provide
high-level decisions, specifying the operation mode of the low level planner
which is responsible for safety. In order to learn a more generic policy, we
propose a scalable RL architecture for the merging scenario that is not
sensitive to changes in the environment configurations. According to our
experiments, the proposed RL agent can efficiently identify cooperative drivers
from their vehicle state history and generate interactive maneuvers, resulting
in faster and more comfortable automated driving. At the same time, thanks to
the safety constraints inside the planner, all of the maneuvers are collision
free and safe.
Related papers
- RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - Long and Short-Term Constraints Driven Safe Reinforcement Learning for Autonomous Driving [11.072917563013428]
Reinforcement learning (RL) has been widely used in decision-making and control tasks, but the risk is very high for the agent in the training process.
In this paper, we propose a novel algorithm based on the long and short-term constraints (LSTC) for safe RL.
The proposed method achieves higher safety in continuous state and action tasks, and exhibits higher exploration performance in long-distance decision-making tasks.
arXiv Detail & Related papers (2024-03-27T02:41:52Z) - DRNet: A Decision-Making Method for Autonomous Lane Changingwith Deep
Reinforcement Learning [7.2282857478457805]
"DRNet" is a novel DRL-based framework that enables a DRL agent to learn to drive by executing reasonable lane changing on simulated highways.
Our DRL agent has the ability to learn the desired task without causing collisions and outperforms DDQN and other baseline models.
arXiv Detail & Related papers (2023-11-02T21:17:52Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Towards Safe Autonomous Driving Policies using a Neuro-Symbolic Deep
Reinforcement Learning Approach [6.961253535504979]
This paper introduces a novel neuro-symbolic model-free DRL approach, called DRL with Symbolic Logics (DRLSL)
It combines the strengths of DRL (learning from experience) and symbolic first-order logics (knowledge-driven reasoning) to enable safe learning in real-time interactions of autonomous driving within real environments.
We have implemented the DRLSL framework in autonomous driving using the highD dataset and demonstrated that our method successfully avoids unsafe actions during both the training and testing phases.
arXiv Detail & Related papers (2023-07-03T19:43:21Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Minimizing Safety Interference for Safe and Comfortable Automated
Driving with Distributional Reinforcement Learning [3.923354711049903]
We propose a distributional reinforcement learning framework to learn adaptive policies that can tune their level of conservativity at run-time based on the desired comfort and utility.
We show that our algorithm learns policies that can still drive reliable when the perception noise is two times higher than the training configuration for automated merging and crossing at occluded intersections.
arXiv Detail & Related papers (2021-07-15T13:36:55Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.