論文の概要: Untrained DNN for Channel Estimation of RIS-Assisted Multi-User OFDM
System with Hardware Impairments
- arxiv url: http://arxiv.org/abs/2107.07423v1
- Date: Tue, 13 Jul 2021 07:30:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 13:48:43.582796
- Title: Untrained DNN for Channel Estimation of RIS-Assisted Multi-User OFDM
System with Hardware Impairments
- Title(参考訳): ハードウェア障害を考慮したRIS支援多ユーザOFDMシステムのチャネル推定のための訓練なしDNN
- Authors: Nipuni Ginige, K. B. Shashika Manosha, Nandana Rajatheva, and Matti
Latva-aho
- Abstract要約: 本稿では、RIS支援マルチユーザ単一入出力(SIMO)周波数分割多重化(OFDM)システムのための深層学習に基づく低複雑性チャネル推定手法を提案する。
提案手法は従来の手法に比べて精度と複雑さの点で高い性能を示す。
- 参考スコア(独自算出の注目度): 11.012356843958282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconfigurable intelligent surface (RIS) is an emerging technology for
improving performance in fifth-generation (5G) and beyond networks. Practically
channel estimation of RIS-assisted systems is challenging due to the passive
nature of the RIS. The purpose of this paper is to introduce a deep
learning-based, low complexity channel estimator for the RIS-assisted
multi-user single-input-multiple-output (SIMO) orthogonal frequency division
multiplexing (OFDM) system with hardware impairments. We propose an untrained
deep neural network (DNN) based on the deep image prior (DIP) network to
denoise the effective channel of the system obtained from the conventional
pilot-based least-square (LS) estimation and acquire a more accurate
estimation. We have shown that our proposed method has high performance in
terms of accuracy and low complexity compared to conventional methods. Further,
we have shown that the proposed estimator is robust to interference caused by
the hardware impairments at the transceiver and RIS.
- Abstract(参考訳): reconfigurable intelligent surface (ris) は第5世代 (5g) とそれ以上のネットワークのパフォーマンスを向上させる新しい技術である。
RISを補助するシステムのチャネル推定は、RISの受動的性質のために困難である。
本稿では,ハードウェア障害のあるsimo(multi-user single-input-multiple-output)直交周波数分割多重化(ofdm)システムのための,深層学習に基づく低複雑性チャネル推定器を提案する。
本稿では、従来のパイロットベース最小二乗推定(LS)から得られたシステムの有効チャネルを識別し、より正確な推定を行うために、DIPネットワークに基づく訓練されていないディープニューラルネットワークを提案する。
提案手法は従来の手法に比べて精度と複雑さの点で高い性能を示した。
さらに,提案した推定器は,トランスシーバとRISのハードウェア障害による干渉に対して頑健であることを示した。
関連論文リスト
- Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging [11.867884158309373]
再構成可能なインテリジェントサーフェス (RIS) は,第6世代 (6G) および通信システムを越えた性能向上のための有望な技術として登場した。
RISの受動的性質とその多数の反射要素は、チャネル推定プロセスに困難をもたらす。
本稿では、自己回帰(AR)予測器と統合された畳み込みニューラルネットワーク(CNN)に基づく、RIS支援マルチインプットマルチアウトプット(MIMO)システムのための拡張チャネル推定フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-09T19:45:49Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
再構成可能なインテリジェントサーフェス(RIS)は,Tera-Hertz大規模マルチインプットマルチアウトプット(MIMO)通信システムのサービスカバレッジを大幅に向上させることができる。
しかし、パイロットとフィードバック信号のオーバーヘッドが限定された正確な高次元チャネル状態情報(CSI)を得ることは困難である。
本稿では、RIS支援Tera-Hertzマルチユーザアクセスシステムのための、ディープラーニング(DL)に基づくレート分割多重アクセス方式を提案する。
論文 参考訳(メタデータ) (2022-09-18T03:07:37Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Time-Varying Channel Prediction for RIS-Assisted MU-MISO Networks via
Deep Learning [15.444805225936992]
再構成可能なインテリジェントサーフェス(RIS)は、無線通信の信号伝送品質を改善するための有望な技術となっている。
しかし、RISアシストシステムでは、正確で低レイテンシで低パイロットオーバヘッドチャネル状態情報(CSI)の取得が大きな課題となっている。
CSIを必要とする3段階のジョイントチャネル分解および予測フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-09T07:26:51Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - On the Robustness of Deep Reinforcement Learning in IRS-Aided Wireless
Communications Systems [31.70191055921352]
我々は、ダウンリンク伝送のためのインテリジェントリフレクティングサーフェス(IRS)支援マルチインプット・シングルアウトプット(MISO)システムについて検討する。
我々は、IRS要素の最適位相シフトを求める際に、Deep Reinforcement Learning(DRL)と従来の最適化手法の性能を比較した。
DRLソリューションは,ノイズの多いチャネルやユーザモビリティに対して,より堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2021-07-17T17:42:25Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
RIS(Reconfigurable Intelligent Surfaces)は、電磁波伝搬の動的制御を提供する、高度にスケーラブルな技術である。
RISを内蔵した無線通信における大きな課題の1つは、複数のRISの低オーバーヘッドダイナミックな構成である。
RISの位相構成に対する低複雑さ教師あり学習手法を考案する。
論文 参考訳(メタデータ) (2020-10-09T05:35:27Z) - Channel Estimation for RIS-Empowered Multi-User MISO Wireless
Communications [35.207416803526876]
基地局とRIS間のチャネルに対する2つの反復推定アルゴリズムを提案する。
1つは交互最小二乗法(ALS)に基づいており、もう1つはベクトル近似メッセージを使って2つの未知のチャネルを反復的に再構築する。
また、推定チャネルと基地局の異なるプリコーディング方式を用いて、ダウンリンク達成可能な総和率についても論じる。
論文 参考訳(メタデータ) (2020-08-04T10:53:51Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
再構成可能なインテリジェントサーフェス(RIS)の配置と受動ビームフォーミング設計のための新しいフレームワークを提案する。
エネルギー効率を最大化するために、共同配置、位相シフト設計、および電力配分の問題を定式化する。
リアルタイムデータセットを活用することで,ユーザの遠隔交通需要を予測するために,LSTM(Long Short-term memory)ベースのエコー状態ネットワーク(ESN)アルゴリズムを提案する。
RISの展開と設計の連立問題を解くために,D3QNに基づく位置取得と位相制御アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-28T14:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。