論文の概要: Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen
Domains
- arxiv url: http://arxiv.org/abs/2107.07497v1
- Date: Thu, 15 Jul 2021 17:51:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-16 15:46:27.050786
- Title: Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen
Domains
- Title(参考訳): unseenドメインにおけるunseenクラス認識のためのコンテキスト条件適応
- Authors: Puneet Mangla, Shivam Chandhok, Vineeth N Balasubramanian and Fahad
Shahbaz Khan
- Abstract要約: 我々は,COCOA (COntext Conditional Adaptive) Batch-Normalization と統合された特徴生成フレームワークを提案する。
生成されたビジュアル機能は、基礎となるデータ分散をよりよくキャプチャすることで、テスト時に見つからないクラスやドメインに一般化できます。
確立した大規模ベンチマークであるDomainNetに対する我々のアプローチを徹底的に評価し、分析する。
- 参考スコア(独自算出の注目度): 48.17225008334873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress towards designing models that can generalize to unseen
domains (i.e domain generalization) or unseen classes (i.e zero-shot learning)
has embarked interest towards building models that can tackle both domain-shift
and semantic shift simultaneously (i.e zero-shot domain generalization). For
models to generalize to unseen classes in unseen domains, it is crucial to
learn feature representation that preserves class-level (domain-invariant) as
well as domain-specific information. Motivated from the success of generative
zero-shot approaches, we propose a feature generative framework integrated with
a COntext COnditional Adaptive (COCOA) Batch-Normalization to seamlessly
integrate class-level semantic and domain-specific information. The generated
visual features better capture the underlying data distribution enabling us to
generalize to unseen classes and domains at test-time. We thoroughly evaluate
and analyse our approach on established large-scale benchmark - DomainNet and
demonstrate promising performance over baselines and state-of-art methods.
- Abstract(参考訳): 未発見ドメイン(ドメイン一般化)や未発見クラス(ゼロショット学習)に一般化可能なモデルの設計に向けた最近の進歩は、ドメインシフトとセマンティクスシフトを同時に扱うモデル(すなわちゼロショットドメイン一般化)の構築に向けられている。
unseenドメインの非seenクラスに一般化するモデルには、クラスレベル(ドメイン不変)とドメイン固有の情報を保持する特徴表現を学ぶことが不可欠である。
生成ゼロショットアプローチの成功を機に,クラスレベルのセマンティクスとドメイン固有の情報をシームレスに統合するために,COCOA (COntext Conditional Adaptive) Batch-Normalizationを統合した特徴生成フレームワークを提案する。
生成されたビジュアル機能は、テスト時に未認識のクラスとドメインに一般化できる基盤となるデータ分散をよりよくキャプチャします。
我々は、確立された大規模ベンチマークであるDomainNetに対する我々のアプローチを徹底的に評価し、分析し、ベースラインと最先端メソッドよりも有望なパフォーマンスを示す。
関連論文リスト
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
斬新なクラスとドメインの両方が存在するようなオープンワールドシナリオでは、理想的なセグメンテーションモデルは安全のために異常なクラスを検出する必要がある。
既存の方法はドメインレベルとセマンティックレベルの分散シフトを区別するのに苦労することが多い。
論文 参考訳(メタデータ) (2024-11-06T11:03:02Z) - Learning to Generalize Unseen Domains via Multi-Source Meta Learning for Text Classification [71.08024880298613]
テキスト分類の多元的領域一般化について検討する。
本稿では、複数の参照ドメインを使用して、未知のドメインで高い精度を達成可能なモデルをトレーニングするフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T07:46:21Z) - Cross-Domain Ensemble Distillation for Domain Generalization [17.575016642108253]
クロスドメイン・アンサンブル蒸留(XDED)という,シンプルで効果的な領域一般化法を提案する。
本手法は,同じラベルを持つトレーニングデータから,異なるドメインから出力ロジットのアンサンブルを生成し,そのアンサンブルとのミスマッチに対して各出力をペナルティ化する。
本手法で学習したモデルは, 敵攻撃や画像の破損に対して堅牢であることを示す。
論文 参考訳(メタデータ) (2022-11-25T12:32:36Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
ドメインの一般化は、ドメイン固有の特徴を抑えながら、ドメイン不変の機能の学習を促進することを目的としている。
オブジェクト検出のためのドメイン一般化手法を提案し, オブジェクト検出アーキテクチャに適用可能な最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-10T11:14:18Z) - Meta-Learned Feature Critics for Domain Generalized Semantic
Segmentation [38.81908956978064]
本稿では,意味的セグメンテーションとドメインの一般化を保証するドメイン不変の特徴を導出する,特徴不絡み付きメタラーニング手法を提案する。
ベンチマークデータセットの結果から,提案モデルの有効性とロバスト性を確認した。
論文 参考訳(メタデータ) (2021-12-27T06:43:39Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
我々は、ドメイン固有性とドメイン不変性の両方が、re-idモデルの一般化能力の向上に不可欠であると主張する。
これら2種類の情報を同時にモデル化するために,2ストリーム適応学習 (TAL) を命名した。
我々のフレームワークは、単一ソースとマルチソースの両方のドメイン一般化タスクに適用できる。
論文 参考訳(メタデータ) (2021-11-29T01:27:42Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
本稿では,異なる領域からの画像を投影することで,ドメインに依存しない遅延埋め込みを学習する手法を提案する。
挑戦的なDomainNetとDomainNet-LSベンチマークの実験は、既存のメソッドよりもアプローチの方が優れていることを示している。
論文 参考訳(メタデータ) (2021-07-12T17:57:46Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
ドメインフリードメイン一般化(DFDG)は、目に見えないテストドメインでより良い一般化性能を実現するモデル非依存の方法である。
DFDGは新しい戦略を用いてドメイン不変なクラス差別的特徴を学習する。
時系列センサと画像分類公開データセットの両方で競合性能を得る。
論文 参考訳(メタデータ) (2021-02-17T17:46:06Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
セマンティックセグメンテーションのための原則的メタラーニングに基づくOCDAアプローチを提案する。
対象ドメインを複数のサブターゲットドメインに,教師なしの方法で抽出した画像スタイルでクラスタリングする。
その後、メタラーニングがデプロイされ、スタイルコードに条件付きでサブターゲットドメイン固有の予測を融合するように学習される。
モデルに依存しないメタラーニング(MAML)アルゴリズムにより,モデルをオンライン更新することを学び,一般化をさらに改善する。
論文 参考訳(メタデータ) (2020-12-15T13:21:54Z) - Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization [27.338573739304604]
ドメイン内および外部の一般化性能を改善するモデルである一般化のためのドメイン固有マスクを紹介する。
ドメインの一般化のために、ゴールはソースドメインの集合から学び、見えないターゲットドメインに最もよく一般化する単一のモデルを作成することである。
本研究では,PACSとDomainNetの両面において,単純なベースラインと最先端の手法と比較して,競争力のある性能を示す。
論文 参考訳(メタデータ) (2020-08-28T20:39:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。