USCO-Solver: Solving Undetermined Stochastic Combinatorial Optimization
Problems
- URL: http://arxiv.org/abs/2107.07508v1
- Date: Thu, 15 Jul 2021 17:59:08 GMT
- Title: USCO-Solver: Solving Undetermined Stochastic Combinatorial Optimization
Problems
- Authors: Guangmo Tong
- Abstract summary: We consider the regression between spaces, aiming to infer high-quality optimization solutions from samples of input-solution pairs.
For learning foundations, we present learning-error analysis under the PAC-Bayesian framework.
We obtain highly encouraging experimental results for several classic problems on both synthetic and real-world datasets.
- Score: 9.015720257837575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world decision-making systems are often subject to uncertainties that
have to be resolved through observational data. Therefore, we are frequently
confronted with combinatorial optimization problems of which the objective
function is unknown and thus has to be debunked using empirical evidence. In
contrast to the common practice that relies on a learning-and-optimization
strategy, we consider the regression between combinatorial spaces, aiming to
infer high-quality optimization solutions from samples of input-solution pairs
-- without the need to learn the objective function. Our main deliverable is a
universal solver that is able to handle abstract undetermined stochastic
combinatorial optimization problems. For learning foundations, we present
learning-error analysis under the PAC-Bayesian framework using a new
margin-based analysis. In empirical studies, we demonstrate our design using
proof-of-concept experiments, and compare it with other methods that are
potentially applicable. Overall, we obtain highly encouraging experimental
results for several classic combinatorial problems on both synthetic and
real-world datasets.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
This study proposes a different approach that integrates gradient-based update through continuous relaxation, combined with Quasi-Quantum Annealing (QQA)
Numerical experiments demonstrate that our method is a competitive general-purpose solver, achieving performance comparable to iSCO and learning-based solvers.
arXiv Detail & Related papers (2024-09-02T12:55:27Z) - Debiasing Conditional Stochastic Optimization [15.901623717313493]
We study the conditional causal optimization (CSO) problem which covers a variety of applications including portfolio selection, reinforcement learning, robust learning, etc.
We develop new algorithms for the finite variant variant CSO problem that significantly improve upon existing results.
We believe that our technique has the potential to be a useful tool for addressing similar challenges in other optimization problems.
arXiv Detail & Related papers (2023-04-20T19:19:55Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
We consider the inverse problem where we use prior decision data to uncover the underlying decision-making process.
This statistical learning problem is referred to as data-driven inverse optimization.
We propose an efficient block coordinate descent-based algorithm to solve large problem instances.
arXiv Detail & Related papers (2022-10-27T12:52:56Z) - Unsupervised Learning for Combinatorial Optimization with Principled
Objective Relaxation [19.582494782591386]
This work proposes an unsupervised learning framework for optimization (CO) problems.
Our key contribution is the observation that if the relaxed objective satisfies entry-wise concavity, a low optimization loss guarantees the quality of the final integral solutions.
In particular, this observation can guide the design of objective models in applications where the objectives are not given explicitly while requiring being modeled in prior.
arXiv Detail & Related papers (2022-07-13T06:44:17Z) - Machine Learning for Combinatorial Optimisation of Partially-Specified
Problems: Regret Minimisation as a Unifying Lens [34.87439325210671]
It is increasingly common to solve optimisation problems that are partially-specified.
The challenge is to learn them from available data, while taking into account a set of hard constraints.
This paper overviews four seemingly unrelated approaches, that can each be viewed as learning the objective function of a hard optimisation problem.
arXiv Detail & Related papers (2022-05-20T13:06:29Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.