Learning Joint Models of Prediction and Optimization
- URL: http://arxiv.org/abs/2409.04898v1
- Date: Sat, 7 Sep 2024 19:52:14 GMT
- Title: Learning Joint Models of Prediction and Optimization
- Authors: James Kotary, Vincenzo Di Vito, Jacob Cristopher, Pascal Van Hentenryck, Ferdinando Fioretto,
- Abstract summary: Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
- Score: 56.04498536842065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Predict-Then-Optimize framework uses machine learning models to predict unknown parameters of an optimization problem from exogenous features before solving. This setting is common to many real-world decision processes, and recently it has been shown that decision quality can be substantially improved by solving and differentiating the optimization problem within an end-to-end training loop. However, this approach requires significant computational effort in addition to handcrafted, problem-specific rules for backpropagation through the optimization step, challenging its applicability to a broad class of optimization problems. This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models. The approach is generic, and based on an adaptation of the Learning-to-Optimize paradigm, from which a rich variety of existing techniques can be employed. Experimental evaluations show the ability of several Learning-to-Optimize methods to provide efficient and accurate solutions to an array of challenging Predict-Then-Optimize problems.
Related papers
- Feature-Based Interpretable Surrogates for Optimization [0.8437187555622164]
In this work, we investigate how we can use more general optimization rules to increase interpretability.
The proposed rules do not map to a concrete solution but to a set of solutions characterized by common features.
In particular, we demonstrate the improvement in solution quality that our approach offers compared to existing interpretable surrogates for optimization.
arXiv Detail & Related papers (2024-09-03T13:12:49Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
We propose to replace the iterative solvers altogether with a trainable parametric set function.
We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems.
arXiv Detail & Related papers (2022-02-08T19:13:13Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.