論文の概要: A Comparison of Deep Learning Classification Methods on Small-scale
Image Data set: from Converlutional Neural Networks to Visual Transformers
- arxiv url: http://arxiv.org/abs/2107.07699v1
- Date: Fri, 16 Jul 2021 04:13:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:40:25.035441
- Title: A Comparison of Deep Learning Classification Methods on Small-scale
Image Data set: from Converlutional Neural Networks to Visual Transformers
- Title(参考訳): 小型画像データセットの深層学習分類法の比較:収束型ニューラルネットワークから視覚変換器へ
- Authors: Peng Zhao, Chen Li, Md Mamunur Rahaman, Hechen Yang, Tao Jiang and
Marcin Grzegorzek
- Abstract要約: 本稿では、畳み込みニューラルネットワークと視覚変換器の適用と特性について説明する。
様々なモデルを用いて、小さなデータセット上で一連の実験を行う。
推奨されたディープラーニングモデルは、モデルアプリケーション環境に応じて与えられる。
- 参考スコア(独自算出の注目度): 18.58928427116305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning has made brilliant achievements in image
classification. However, image classification of small datasets is still not
obtained good research results. This article first briefly explains the
application and characteristics of convolutional neural networks and visual
transformers. Meanwhile, the influence of small data set on classification and
the solution are introduced. Then a series of experiments are carried out on
the small datasets by using various models, and the problems of some models in
the experiments are discussed. Through the comparison of experimental results,
the recommended deep learning model is given according to the model application
environment. Finally, we give directions for future work.
- Abstract(参考訳): 近年、深層学習は画像分類において素晴らしい成果を上げている。
しかし、小さなデータセットのイメージ分類は良い研究結果が得られていない。
本稿ではまず,畳み込みニューラルネットワークと視覚トランスフォーマーの応用と特性について概説する。
一方,小さなデータセットが分類と解に与える影響について紹介する。
そこで, 各種モデルを用いて小データセット上で一連の実験を行い, 実験におけるいくつかのモデルの問題について議論した。
実験結果の比較により、モデル適用環境に応じて推奨深層学習モデルが与えられる。
最後に、将来の仕事の指示を与えます。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
我々は,GANに基づく拡張性能のデータセットサイズ依存性について,小サンプルに着目して検討した。
両方のセットでStyleGAN2-ADAをトレーニングし、生成した画像の品質を検証した後、マルチクラス分類問題における拡張アプローチの1つとしてトレーニングされたGANを使用する。
GANベースの拡張アプローチは、中規模および大規模データセットでは古典的な拡張に匹敵するが、より小さなデータセットでは不十分である。
論文 参考訳(メタデータ) (2024-01-26T08:28:13Z) - An evaluation of pre-trained models for feature extraction in image
classification [0.0]
この研究は、画像分類タスクにおける特徴抽出のために、様々な事前学習ニューラルネットワークの性能を比較することを目的としている。
以上の結果から,CLIP-ResNet50モデルに類似した性能を持つが,可変性が低いCLIP-ViT-BとViT-H-14により,データセットに沿って最高の汎用性能が達成されたことが示唆された。
論文 参考訳(メタデータ) (2023-10-03T13:28:14Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Learning to Generate Synthetic Training Data using Gradient Matching and
Implicit Differentiation [77.34726150561087]
本稿では,深層ネットワークの訓練に要するデータ量を削減できる各種データ蒸留技術について検討する。
近年の考え方に触発されて, 生成的学習ネットワーク, 勾配マッチング, インプリシット関数理論に基づく新しいデータ蒸留手法を提案する。
論文 参考訳(メタデータ) (2022-03-16T11:45:32Z) - A Comparison for Anti-noise Robustness of Deep Learning Classification
Methods on a Tiny Object Image Dataset: from Convolutional Neural Network to
Visual Transformer and Performer [27.023667473278266]
まず,ディープラーニングにおける畳み込みニューラルネットワークとビジュアルトランスフォーマーの開発について概説する。
次に、畳み込みニューラルネットワークとビジュアルトランスフォーマーの様々なモデルを用いて、小さなオブジェクトの画像データセット上で一連の実験を行う。
小型物体の分類における問題点を論じ, 今後, 小型物体の分類を展望する。
論文 参考訳(メタデータ) (2021-06-03T15:28:17Z) - Rethinking Natural Adversarial Examples for Classification Models [43.87819913022369]
ImageNet-Aは、自然対比例の有名なデータセットです。
オブジェクト検出技術を用いたImageNet-A例の背景影響を低減して仮説を検証した。
実験により,様々な分類モデルを用いた物体検出モデルは,その分類モデルよりも精度が高かった。
論文 参考訳(メタデータ) (2021-02-23T14:46:48Z) - PK-GCN: Prior Knowledge Assisted Image Classification using Graph
Convolution Networks [3.4129083593356433]
クラス間の類似性は、分類のパフォーマンスに影響を与える可能性がある。
本稿では,クラス類似性の知識を畳み込みニューラルネットワークモデルに組み込む手法を提案する。
実験結果から, 利用可能なデータの量が少ない場合には, 分類精度が向上することが示唆された。
論文 参考訳(メタデータ) (2020-09-24T18:31:35Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z) - Looking back to lower-level information in few-shot learning [4.873362301533825]
本稿では,隠れたニューラルネットワーク層の特徴埋め込みを低レベル支援情報として活用し,分類精度を向上させることを提案する。
筆者らは,MiniImageNet と tieredImageNet という2つの人気の数点学習データセットを用いた実験を行い,この手法がネットワークの低レベル情報を利用して最先端の分類性能を向上できることを示した。
論文 参考訳(メタデータ) (2020-05-27T20:32:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。