論文の概要: Recognizing bird species in diverse soundscapes under weak supervision
- arxiv url: http://arxiv.org/abs/2107.07728v1
- Date: Fri, 16 Jul 2021 06:54:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 21:57:06.802699
- Title: Recognizing bird species in diverse soundscapes under weak supervision
- Title(参考訳): 弱監督下の多様な音環境における鳥類の認識
- Authors: Christof Henkel, Pascal Pfeiffer and Philipp Singer
- Abstract要約: 複雑で多様なサウンドスケープにおける鳥の発声に対するロバストな分類手法を提案し,BirdCLEF 2021チャレンジにおいて第2位を獲得した。
本稿では,新しい拡張法で補足された効率的なモデリングとトレーニングルーチンを用いることで,事前学習した畳み込みニューラルネットワークをフル活用する方法を説明する。
- 参考スコア(独自算出の注目度): 0.2148535041822524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a robust classification approach for avian vocalization in complex
and diverse soundscapes, achieving second place in the BirdCLEF2021 challenge.
We illustrate how to make full use of pre-trained convolutional neural
networks, by using an efficient modeling and training routine supplemented by
novel augmentation methods. Thereby, we improve the generalization of weakly
labeled crowd-sourced data to productive data collected by autonomous recording
units. As such, we illustrate how to progress towards an accurate automated
assessment of avian population which would enable global biodiversity
monitoring at scale, impossible by manual annotation.
- Abstract(参考訳): 本研究では,複雑で多様なサウンドスケープにおける鳥の発声に対するロバストな分類手法を提案する。
本稿では,新しい拡張法によって補完される効率的なモデリングとトレーニングルーチンを用いて,事前学習された畳み込みニューラルネットワークをフル活用する方法を示す。
これにより、自動記録装置が収集した生産データに対して、弱いラベル付きクラウドソースデータの一般化が向上する。
そこで本研究では,人手によるアノテーションでは不可能な大規模な生物多様性モニタリングを実現するために,鳥の個体群の自動評価を正確に行う方法について述べる。
関連論文リスト
- Generalization in birdsong classification: impact of transfer learning methods and dataset characteristics [2.6740633963478095]
大規模な鳥音分類における伝達学習の有効性について検討する。
実験により, 微調整蒸留と知識蒸留の双方で高い性能が得られた。
動物音コミュニティにおけるより包括的なラベリングの実践を提唱する。
論文 参考訳(メタデータ) (2024-09-21T11:33:12Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
合成クエリと組み合わせた,ノイズの多い自己学習フレームワークを提案する。
実験結果から,本手法は既存手法よりも一貫した改善が得られた。
我々の手法はデータ効率が良く、競争のベースラインより優れています。
論文 参考訳(メタデータ) (2023-11-27T06:19:50Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - Active Bird2Vec: Towards End-to-End Bird Sound Monitoring with
Transformers [2.404305970432934]
自己教師付き(SSL)と深層能動学習(DAL)を組み合わせた鳥音モニタリングにおけるエンドツーエンド学習へのシフトを提案する。
我々は,従来のスペクトログラム変換をバイパスし,直接生音声処理を実現することを目的としている。
論文 参考訳(メタデータ) (2023-08-14T13:06:10Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Classification of animal sounds in a hyperdiverse rainforest using
Convolutional Neural Networks [0.0]
受動的に記録された音場から機械学習アプローチによる自動種検出は有望な手法である。
本研究では,ボルネオの熱帯林の音環境と,移動学習による畳み込みニューラルネットワークモデル(CNN)を用いた。
以上の結果から,トランスファー学習とデータ拡張は,多くの稀な種を持つ小さなサウンドスケーププロジェクトにおいても,CNNを用いて声の分類が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-11-29T21:34:57Z) - Parsing Birdsong with Deep Audio Embeddings [0.5599792629509227]
特徴呼と環境騒音を半教師付きで同定する手法を提案する。
我々は、畳み込みオートエンコーダと2つの事前学習ネットワークを含む、音声サンプルの潜在表現を学習するために、いくつかの手法を利用する。
論文 参考訳(メタデータ) (2021-08-20T14:45:44Z) - Zoo-Tuning: Adaptive Transfer from a Zoo of Models [82.9120546160422]
Zoo-Tuningは、事前訓練されたモデルのパラメータをターゲットタスクに適応的に転送することを学ぶ。
我々は、強化学習、画像分類、顔のランドマーク検出など、様々なタスクに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-06-29T14:09:45Z) - Iterative Human and Automated Identification of Wildlife Images [25.579224100175434]
カメラのトラップは野生生物の監視にますます使われているが、この技術は通常、広範なデータアノテーションを必要とする。
提案された反復的人間および自動識別アプローチは、長尾分布を持つ野生動物の画像データから学習することができる。
提案手法は既存の手法の人間のアノテーションの20%しか使わず、90%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-05-05T20:51:30Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。