Maximising Precision in Saturation-Limited Absorption Measurements
- URL: http://arxiv.org/abs/2107.07888v1
- Date: Fri, 16 Jul 2021 13:19:39 GMT
- Title: Maximising Precision in Saturation-Limited Absorption Measurements
- Authors: J. Biele, S. Wollmann, J. W. Silverstone, J. C. F. Matthews and E. J.
Allen
- Abstract summary: We present a classical probe-sample optimisation strategy to maximise precision.
We find that optimal probe powers always fall within the saturation regime.
We evaluate amplitude-squeezed light as a viable experimental probe state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum fluctuations in the intensity of an optical probe is noise which
limits measurement precision in absorption spectroscopy. Increased probe power
can offer greater precision, however, this strategy is often constrained by
sample saturation. Here, we analyse measurement precision for a generalised
absorption model in which we account for saturation and explore its effect on
both classical and quantum probe performance. We present a classical
probe-sample optimisation strategy to maximise precision and find that optimal
probe powers always fall within the saturation regime. We apply our
optimisation strategy to two examples, high-precision Doppler broadened
thermometry and an absorption spectroscopy measurement of Chlorophyll A. We
derive a limit on the maximum precision gained from using a non-classical probe
and find a strategy capable of saturating this bound. We evaluate
amplitude-squeezed light as a viable experimental probe state and find it
capable of providing precision that reaches to within > 85% of the ultimate
quantum limit with currently available technology.
Related papers
- Fundamental limitations of time measurement precision in Hong-Ou-Mandel
interferometry [0.0]
In quantum mechanics, the precision achieved in parameter estimation using a quantum state as a probe is determined by the measurement strategy employed.
We show that the scaling of precision with visibility depends on the effective area in time-frequency phase space occupied by the state used as a probe, and we find that an optimal scaling exists.
arXiv Detail & Related papers (2023-09-19T14:15:22Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Quantum-enhanced absorption spectroscopy with bright squeezed frequency
combs [91.3755431537592]
We propose a strategy combining the advantages of frequency modulation spectroscopy with the reduced noise properties accessible by squeezing the probe state.
A homodyne detection scheme allows the simultaneous measurement of the absorption at multiple frequencies.
We predict a significant enhancement of the signal-to-noise ratio that scales exponentially with the squeezing factor.
arXiv Detail & Related papers (2022-09-30T17:57:05Z) - Estimating the concentration of chiral media with bright squeezed light [77.34726150561087]
We quantify the performance of Gaussian probes in estimating the concentration of chiral analytes.
Four-fold precision enhancement is achievable using state-of-the-art squeezing levels and intensity measurements.
arXiv Detail & Related papers (2022-08-21T17:18:10Z) - Quantum metrology of noisy spreading channels [0.0]
We provide the optimal measurement strategy for a class of noisy channels.
We show that, for small displacement, a squeezed vacuum probe field is optimal among strategies with same average energy.
arXiv Detail & Related papers (2022-08-19T15:05:26Z) - Advantage of Coherent States in Ring Resonators over Any Quantum Probe
Single-Pass Absorption Estimation Strategy [63.137661897716555]
We show that coherent-state probes in all-pass ring resonators can outperform any quantum probe single-pass strategy.
We also find that under optimal conditions coherent-state probes equal the performance of arbitrarily bright pure single-mode squeezed probes.
arXiv Detail & Related papers (2021-12-14T17:01:52Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Entanglement-Assisted Absorption Spectroscopy [0.7874708385247353]
We design a practical transmitter-receiver system that exploits entanglement to achieve a provable quantum advantage.
In detecting the presence of an absorption line, our quantum scheme achieves the optimum performance allowed by quantum mechanics.
arXiv Detail & Related papers (2020-09-25T04:13:29Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.