論文の概要: MODRL/D-EL: Multiobjective Deep Reinforcement Learning with Evolutionary
Learning for Multiobjective Optimization
- arxiv url: http://arxiv.org/abs/2107.07961v1
- Date: Fri, 16 Jul 2021 15:22:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-19 14:34:42.848211
- Title: MODRL/D-EL: Multiobjective Deep Reinforcement Learning with Evolutionary
Learning for Multiobjective Optimization
- Title(参考訳): MODRL/D-EL:多目的最適化のための進化学習による多目的深層強化学習
- Authors: Yongxin Zhang, Jiahai Wang, Zizhen Zhang, Yalan Zhou
- Abstract要約: 本稿では、時間窓付き多目的車両ルーティング問題と呼ばれる典型的な複雑な問題に対して、進化学習アルゴリズムを用いた多目的深部強化学習を提案する。
MO-VRPTWインスタンスの実験結果は、提案アルゴリズムが他の学習ベースおよび反復型アプローチよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 10.614594804236893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based heuristics for solving combinatorial optimization problems has
recently attracted much academic attention. While most of the existing works
only consider the single objective problem with simple constraints, many
real-world problems have the multiobjective perspective and contain a rich set
of constraints. This paper proposes a multiobjective deep reinforcement
learning with evolutionary learning algorithm for a typical complex problem
called the multiobjective vehicle routing problem with time windows (MO-VRPTW).
In the proposed algorithm, the decomposition strategy is applied to generate
subproblems for a set of attention models. The comprehensive context
information is introduced to further enhance the attention models. The
evolutionary learning is also employed to fine-tune the parameters of the
models. The experimental results on MO-VRPTW instances demonstrate the
superiority of the proposed algorithm over other learning-based and
iterative-based approaches.
- Abstract(参考訳): 近年,組合せ最適化問題を解決するための学習に基づくヒューリスティックスが注目を集めている。
既存の作品の多くは単純な制約付き単一目的問題のみを考えるが、実世界の問題の多くは多目的的な視点を持ち、豊富な制約を含む。
本稿では、時間窓付き多目的車両ルーティング問題(MO-VRPTW)と呼ばれる、典型的な複雑な問題に対する進化学習アルゴリズムを用いた多目的深部強化学習を提案する。
提案アルゴリズムでは,分解戦略を適用し,一連の注意モデルに対するサブプロブレムを生成する。
注意モデルをさらに強化するために、包括的コンテキスト情報を導入する。
進化学習はモデルのパラメータを微調整するためにも用いられる。
MO-VRPTWインスタンスの実験結果は、提案アルゴリズムが他の学習ベースおよび反復型アプローチよりも優れていることを示す。
関連論文リスト
- Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Efficient Meta Neural Heuristic for Multi-Objective Combinatorial
Optimization [35.09656455088854]
本稿では,多目的最適化問題を解くために,効率的なメタニューラルベクトル(EMNH)を提案する。
EMNHは、ソリューションの品質と学習効率の点で最先端のニューラルネットワークより優れている。
論文 参考訳(メタデータ) (2023-10-22T08:59:02Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Meta-Learning-based Deep Reinforcement Learning for Multiobjective
Optimization Problems [11.478548460936837]
本稿では,簡潔なメタラーニングに基づくDRLアプローチを提案する。
最初にメタモデルをメタラーニングで訓練する。
メタモデルは、対応するサブ問題に対するサブモデルを導出するためのいくつかの更新ステップで微調整される。
論文 参考訳(メタデータ) (2021-05-06T15:09:35Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
目的の選好から最適な政策を学習する単一政策 MORL の問題について検討する。
既存の方法は、多目的決定プロセスの正確な知識のような強い仮定を必要とする。
モデルベースエンベロップ値 (EVI) と呼ばれる新しいアルゴリズムを提案し, 包含された多目的$Q$学習アルゴリズムを一般化する。
論文 参考訳(メタデータ) (2020-11-19T22:35:31Z) - MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization [15.235261981563523]
本稿では,多目的最適化問題を解くための多目的深部強化学習法を提案する。
本手法では,各サブプロブレムをアテンションモデルにより解き,入力ノードの構造的特徴とノード的特徴を活用できる。
論文 参考訳(メタデータ) (2020-02-13T12:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。