Robust Risk-Sensitive Reinforcement Learning Agents for Trading Markets
- URL: http://arxiv.org/abs/2107.08083v1
- Date: Fri, 16 Jul 2021 19:15:13 GMT
- Title: Robust Risk-Sensitive Reinforcement Learning Agents for Trading Markets
- Authors: Yue Gao and Kry Yik Chau Lui and Pablo Hernandez-Leal
- Abstract summary: Trading markets represent a real-world financial application to deploy reinforcement learning agents.
Our work is the first one extending empirical game theory analysis for multi-agent learning by considering risk-sensitive payoffs.
- Score: 23.224860573461818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trading markets represent a real-world financial application to deploy
reinforcement learning agents, however, they carry hard fundamental challenges
such as high variance and costly exploration. Moreover, markets are inherently
a multiagent domain composed of many actors taking actions and changing the
environment. To tackle these type of scenarios agents need to exhibit certain
characteristics such as risk-awareness, robustness to perturbations and low
learning variance. We take those as building blocks and propose a family of
four algorithms. First, we contribute with two algorithms that use risk-averse
objective functions and variance reduction techniques. Then, we augment the
framework to multi-agent learning and assume an adversary which can take over
and perturb the learning process. Our third and fourth algorithms perform well
under this setting and balance theoretical guarantees with practical use.
Additionally, we consider the multi-agent nature of the environment and our
work is the first one extending empirical game theory analysis for multi-agent
learning by considering risk-sensitive payoffs.
Related papers
- Deviations from the Nash equilibrium and emergence of tacit collusion in a two-player optimal execution game with reinforcement learning [0.9208007322096533]
We study a scenario in which two autonomous agents learn to liquidate the same asset optimally in the presence of market impact.
Our results show that the strategies learned by the agents deviate significantly from the Nash equilibrium of the corresponding market impact game.
We explore how different levels of market volatility influence the agents' performance and the equilibria they discover.
arXiv Detail & Related papers (2024-08-21T16:54:53Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Risk-Aware Distributed Multi-Agent Reinforcement Learning [8.287693091673658]
We develop a distributed MARL approach to solve decision-making problems in unknown environments by learning risk-aware actions.
We then propose a distributed MARL algorithm called the CVaR QD-Learning algorithm, and establish that value functions of individual agents reaches consensus.
arXiv Detail & Related papers (2023-04-04T17:56:44Z) - Toward Risk-based Optimistic Exploration for Cooperative Multi-Agent
Reinforcement Learning [9.290757451344673]
We present a risk-based exploration that leads to collaboratively optimistic behavior by shifting the sampling region of distribution.
Our method shows remarkable performance in multi-agent settings requiring cooperative exploration based on quantile regression.
arXiv Detail & Related papers (2023-03-03T08:17:57Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Towards Multi-Agent Reinforcement Learning driven Over-The-Counter
Market Simulations [16.48389671789281]
We study a game between liquidity provider and liquidity taker agents interacting in an over-the-counter market.
By playing against each other, our deep-reinforcement-learning-driven agents learn emergent behaviors.
We show convergence rates for our multi-agent policy gradient algorithm under a transitivity assumption.
arXiv Detail & Related papers (2022-10-13T17:06:08Z) - Robust Reinforcement Learning via Genetic Curriculum [5.421464476555662]
Genetic curriculum is an algorithm that automatically identifies scenarios in which the agent currently fails and generates an associated curriculum.
Our empirical studies show improvement in robustness over the existing state of the art algorithms, providing training curricula that result in agents being 2 - 8x times less likely to fail.
arXiv Detail & Related papers (2022-02-17T01:14:20Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS) is a framework for learning AI policies that are robust to such multiagent sim-to-real gaps.
ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
In particular, ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
arXiv Detail & Related papers (2021-06-10T04:32:20Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.