論文の概要: Mediated Uncoupled Learning: Learning Functions without Direct
Input-output Correspondences
- arxiv url: http://arxiv.org/abs/2107.08135v1
- Date: Fri, 16 Jul 2021 22:13:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-20 15:14:04.765393
- Title: Mediated Uncoupled Learning: Learning Functions without Direct
Input-output Correspondences
- Title(参考訳): メディア非結合学習:直接出力対応のない学習機能
- Authors: Ikko Yamane, Junya Honda, Florian Yger, Masashi Sugiyama
- Abstract要約: ペア化されたデータがない場合、$X$から$Y$を予測するタスクを考えます。
単純なアプローチは、$S_X$で$U$から$U$を予測し、$S_Y$で$U$から$Y$を予測することである。
我々は$U$を予測しない新しい方法を提案するが、$f(X)$と$S_X$をトレーニングすることで$Y = f(X)$を直接学習し、$h(U)$を予測する。
- 参考スコア(独自算出の注目度): 80.95776331769899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ordinary supervised learning is useful when we have paired training data of
input $X$ and output $Y$. However, such paired data can be difficult to collect
in practice. In this paper, we consider the task of predicting $Y$ from $X$
when we have no paired data of them, but we have two separate, independent
datasets of $X$ and $Y$ each observed with some mediating variable $U$, that
is, we have two datasets $S_X = \{(X_i, U_i)\}$ and $S_Y = \{(U'_j, Y'_j)\}$. A
naive approach is to predict $U$ from $X$ using $S_X$ and then $Y$ from $U$
using $S_Y$, but we show that this is not statistically consistent. Moreover,
predicting $U$ can be more difficult than predicting $Y$ in practice, e.g.,
when $U$ has higher dimensionality. To circumvent the difficulty, we propose a
new method that avoids predicting $U$ but directly learns $Y = f(X)$ by
training $f(X)$ with $S_{X}$ to predict $h(U)$ which is trained with $S_{Y}$ to
approximate $Y$. We prove statistical consistency and error bounds of our
method and experimentally confirm its practical usefulness.
- Abstract(参考訳): 通常の教師付き学習は、入力$x$と出力$y$のペアトレーニングデータがあるときに便利です。
しかし、このようなペアデータの収集は実際には困難である。
この論文では、ペアデータがない場合、$x$から$y$を予測するタスクについて検討するが、分離独立データセットは$x$と$y$の2つがあり、それぞれに変数$u$、すなわち$s_x = \{(x_i, u_i)\}$と$s_y = \{(u'_j, y'_j)\} の2つのデータセットがある。
単純なアプローチは、$S_X$で$U$、$S_Y$で$U$を予測し、$U$で$S_Y$で$Y$を予測することである。
さらに、u$ の予測は、例えば $u$ がより高い次元を持つ場合に、実際に $y$ を予測するよりも難しくなる。
この難しさを回避するために、$U$の予測を避けるために、$f(X)$と$S_{X}$のトレーニングによって$Y = f(X)$を直接学習し、$S_{Y}$でトレーニングされた$h(U)$を予測する新しい方法を提案する。
本手法の統計的一貫性と誤差境界を実証し,その実用的有用性を実験的に検証した。
関連論文リスト
- Guarantees for Nonlinear Representation Learning: Non-identical Covariates, Dependent Data, Fewer Samples [24.45016514352055]
我々は、関数クラス$mathcal F times Mathcal G$から、T+1$関数$f_star(t) circ g_star$を学習する際のサンプル複雑度について研究する。
タスク数が$T$になるにつれて、サンプル要件とリスクバウンドの両方が$r$次元回帰に収束することを示す。
論文 参考訳(メタデータ) (2024-10-15T03:20:19Z) - LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions [54.54897832889028]
任意の$K$に対して、$n$とは独立に「普遍集合」$Uサブセット[n]$が存在し、任意の$Q$と任意の行$i$に対して、大きな注目スコアが$A_i,j$ in row $i$ of $A$は全て$jin U$を持つことを示す。
我々は、視覚変換器のスキームの利点を実証的に示し、トレーニング中に我々の普遍的なセットを使用する新しいモデルのトレーニング方法を示した。
論文 参考訳(メタデータ) (2024-10-07T19:47:13Z) - IT$^3$: Idempotent Test-Time Training [95.78053599609044]
本稿では,分散シフトの課題に対処する新しいアプローチであるIdempotent Test-Time Training (IT$3$)を紹介する。
IT$3$は、イデオロジェンスの普遍性に基づいている。
画像分類の劣化など,様々なタスクにまたがるアプローチの汎用性を実証する。
論文 参考訳(メタデータ) (2024-10-05T15:39:51Z) - Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization [65.8915778873691]
条件分布は機械学習の中心的な問題です
ペアデータとペアデータの両方を統合する新しい学習パラダイムを提案する。
我々のアプローチはまた、興味深いことに逆エントロピー最適輸送(OT)と結びついている。
論文 参考訳(メタデータ) (2024-10-03T16:12:59Z) - Phase Transitions in the Detection of Correlated Databases [12.010807505655238]
本稿では,2つのガウスデータベースの相関関係を$mathsfXinmathbbRntimes d$と$mathsfYntimes d$で検出する問題について検討する。
この問題は、ソーシャルメディア、計算生物学などの分析に関係している。
論文 参考訳(メタデータ) (2023-02-07T10:39:44Z) - TURF: A Two-factor, Universal, Robust, Fast Distribution Learning
Algorithm [64.13217062232874]
最も強力で成功したモダリティの1つは、全ての分布を$ell$距離に近似し、基本的に最も近い$t$-piece次数-$d_$の少なくとも1倍大きい。
本稿では,この数値をほぼ最適に推定する手法を提案する。
論文 参考訳(メタデータ) (2022-02-15T03:49:28Z) - Agnostic learning with unknown utilities [70.14742836006042]
現実世界の多くの問題において、決定の効用は基礎となる文脈である$x$ と decision $y$ に依存する。
我々はこれを未知のユーティリティによる不可知学習として研究する。
サンプルされた点のみのユーティリティを推定することで、よく一般化した決定関数を学習できることを示す。
論文 参考訳(メタデータ) (2021-04-17T08:22:04Z) - Faster Uncertainty Quantification for Inverse Problems with Conditional
Normalizing Flows [0.9176056742068814]
逆問題では、ペア化されたサンプル$(x,y)sim p_X,Y(x,y)$で、$y$は物理系の部分的な観測であることが多い。
条件付きジェネレータ$q_theta(x|y)$をトレーニングするために,フローとジョイントデータを正規化する2段階のスキームを提案する。
論文 参考訳(メタデータ) (2020-07-15T20:36:30Z) - Learning and Testing Variable Partitions [13.575794982844222]
我々は $mathcalO(k n2)(delta + epsilon)$ が、任意の $epsilon > 0$ に対して $tildemathcalO(n2 mathrmpoly (1/epsilon)$ で学習可能であることを示す。
また、両面のテスタでさえ$k = 2$の場合に$Omega(n)$クエリが必要であることも示しています。
論文 参考訳(メタデータ) (2020-03-29T10:12:32Z) - Sample Amplification: Increasing Dataset Size even when Learning is Impossible [15.864702679819544]
未知のディストリビューションから引き出されたデータである$D$が、このデータセットを増幅し、さらに大きなサンプルセットを$D$から抽出したように見えるように出力することは、どの程度まで可能か?
この問題は次のように定式化する: $left(n, n + Theta(fracnsqrtk)right)$アンプが存在するが、小さな定数全変動距離への分布を学習するには$Theta(d)$サンプルが必要である。
論文 参考訳(メタデータ) (2019-04-26T21:42:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。