論文の概要: Co-designing Intelligent Control of Building HVACs and Microgrids
- arxiv url: http://arxiv.org/abs/2107.08378v1
- Date: Sun, 18 Jul 2021 06:39:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-21 04:58:25.481095
- Title: Co-designing Intelligent Control of Building HVACs and Microgrids
- Title(参考訳): HVACとマイクログリッドの協調設計による知的制御
- Authors: Rumia Masburah and Sayan Sinha and Rajib Lochan Jana, Soumyajit Dey,
Qi Zhu
- Abstract要約: 建設負荷は先進国で生産されるエネルギーの約40%を消費する。
再生可能資源ベースのマイクログリッドは、より緑で安価な代替品を提供する。
- 参考スコア(独自算出の注目度): 2.180133426539068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building loads consume roughly 40% of the energy produced in developed
countries, a significant part of which is invested towards building
temperature-control infrastructure. Therein, renewable resource-based
microgrids offer a greener and cheaper alternative. This communication explores
the possible co-design of microgrid power dispatch and building HVAC (heating,
ventilation and air conditioning system) actuations with the objective of
effective temperature control under minimised operating cost. For this, we
attempt control designs with various levels of abstractions based on
information available about microgrid and HVAC system models using the Deep
Reinforcement Learning (DRL) technique. We provide control architectures that
consider model information ranging from completely determined system models to
systems with fully unknown parameter settings and illustrate the advantages of
DRL for the design prescriptions.
- Abstract(参考訳): 建設負荷は先進国で生産されるエネルギーの約40%を消費し、その大部分は温度制御インフラの構築に費やされている。
再生可能資源ベースのマイクログリッドは、よりグリーンで安価な代替手段を提供する。
このコミュニケーションは, 運用コストの最小化による有効温度制御を目的とし, HVAC(暖房, 換気, 空調システム)の動作とマイクログリッドの同時設計の可能性を探るものである。
そこで我々は,Deep Reinforcement Learning (DRL) 技術を用いて,マイクログリッドおよびHVACシステムモデルに関する情報に基づいて,様々な抽象化レベルの制御設計を試みる。
完全に決定されたシステムモデルから、完全に未知のパラメータ設定を持つシステムまで、モデル情報を考慮した制御アーキテクチャを提供し、設計基準に対するDRLの利点を示す。
関連論文リスト
- Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering [3.2114754609864695]
暖房、換気、空調のシステムは、建築セクターにおけるエネルギー使用量の約40%を消費する。
大規模HVACシステム管理では,各サブシステムに対して詳細なモデルを構築することは困難である。
k平均クラスタリング法に基づく新しいデータ駆動室温予測モデルを提案する。
論文 参考訳(メタデータ) (2024-02-21T09:04:45Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
本研究は,多室ビルにおける室内温度予測のためのグローバルトランスフォーマーアーキテクチャを提案する。
エネルギー消費を最適化し、HVACシステムに関連する温室効果ガス排出を削減することを目的としている。
本研究は,マルチルームビルにおける室内温度予測にトランスフォーマーアーキテクチャを適用した最初の事例である。
論文 参考訳(メタデータ) (2023-10-31T14:09:32Z) - Autonomous Payload Thermal Control [55.2480439325792]
小さな衛星では、熱制御装置、科学機器、電子部品のスペースは少ない。
深部強化学習を用いた自律型熱制御ツールを提案する。
提案するフレームワークは,運用範囲の温度を維持するためにペイロード処理能力の制御を学べる。
論文 参考訳(メタデータ) (2023-07-28T09:40:19Z) - Data-driven HVAC Control Using Symbolic Regression: Design and
Implementation [0.0]
本研究では,データ駆動加熱・換気・空調制御の設計と実装手法を提案する。
熱力学の構築は、収集されたデータから構築されたシンボリック回帰モデル(SRM)を用いてモデル化される。
提案フレームワークは、広く使われているサーモスタットコントローラと比較してピーク電力を16.1%削減する。
論文 参考訳(メタデータ) (2023-04-06T13:57:50Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
現在の制御戦略と最適化アルゴリズムでは、そのほとんどはリアルタイムフィードバックから情報を受け取ることに依存している。
本稿では,システム制御のためのシステム特性を同時に構築することによる,ダイナミックな事前知識を組み込む,エンジニアフレンドリな制御戦略フレームワークを提案する。
典型的な制御戦略でシステム制御を加熱するケースでテストしたところ、我々のフレームワークは15%の省エネ性を持っていることがわかった。
論文 参考訳(メタデータ) (2023-01-23T09:07:07Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
強化学習(RL)による制御は、建築エネルギー効率を著しく向上させることが示されている。
我々は、ゼロショットビルディング制御と呼ばれるパラダイムを優先せずに、排出削減ポリシーを得られることを示す。
論文 参考訳(メタデータ) (2022-08-12T17:13:25Z) - Model-assisted Learning-based Framework for Sensor Fault-Tolerant
Building HVAC Control [2.6246169665063634]
本稿では,センサフォールトトレラントHVAC制御のための新しい学習フレームワークを提案する。
本研究は,1)センサ故障の可能性を考慮した温度予測,2)精度評価に基づく提案の1つの選択,3)選択した温度推定による強化学習の3つの深層学習ベースコンポーネントを含む。
論文 参考訳(メタデータ) (2021-06-27T05:03:08Z) - Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial
Buildings [38.326533494236266]
商業ビルでは、総電力の約40%-50%が暖房、換気、空調システムによるものである。
本稿では, ゾーンの占有, 熱的快適さ, 室内空気質の快適さをともなう動的価格の下で, マルチゾーンビルにおけるHVACシステムのエネルギーコストを最小化することを目的としている。
論文 参考訳(メタデータ) (2020-06-25T03:41:42Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。