Atomtronic circuits: from many-body physics to quantum technologies
- URL: http://arxiv.org/abs/2107.08561v2
- Date: Tue, 14 Jun 2022 04:48:24 GMT
- Title: Atomtronic circuits: from many-body physics to quantum technologies
- Authors: Luigi Amico, Dana Anderson, Malcolm Boshier, Jean-Philippe Brantut,
Leong-Chuan Kwek, Anna Minguzzi, Wolf von Klitzing
- Abstract summary: Atomtronics aims to manipulate ultracold atom moving in matter wave circuits for both fundamental studies in quantum science and technological applications.
We describe the physics of matter-waves in simple circuits such as ring traps and two-terminal systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atomtronics is an emerging field that aims to manipulate ultracold atom
moving in matter wave circuits for both fundamental studies in quantum science
and technological applications. In this colloquium, we review recent progress
in matter-wave circuitry and atomtronics-based quantum technology. After a
short introduction to the basic physical principles and the key experimental
techniques needed to realize atomtronic systems, we describe the physics of
matter-waves in simple circuits such as ring traps and two-terminal systems.
The main experimental observations and outstanding questions are discussed. We
also present possible applications to a broad range of quantum technologies,
from quantum sensing with atom interferometry to future quantum simulation and
quantum computation architectures.
Related papers
- Atomic Quantum Technologies for Quantum Matter and Fundamental Physics Applications [0.0]
Physics is living an era of unprecedented cross-fertilization among the different areas of science.
We discuss the manifold impact that ultracold-atom quantum technologies can have in fundamental and applied science.
We illustrate how the engineering of table-top experiments with atom technologies is engendering applications.
arXiv Detail & Related papers (2024-05-10T16:52:20Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Electronics for Fundamental Physics [0.0]
The emerging field of quantum sensors and electronics for fundamental physics is introduced.
This article focuses on ultra-low-noise techniques for radio to far-infrared wavelengths, where existing devices fall short of theoretical limits.
arXiv Detail & Related papers (2023-02-08T11:21:41Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Selected topics of quantum computing for nuclear physics [0.24466725954625884]
Nuclear physics, whose underling theory is described by quantum gauge field coupled with matter, is fundamentally important.
Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.
Digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attentions.
arXiv Detail & Related papers (2020-11-03T02:35:18Z) - Roadmap on Atomtronics: State of the art and perspective [0.0]
Atomtronics deals with matter-wave circuits of ultra-cold atoms manipulated through magnetic or laser-generated guides.
New types of quantum networks can be constructed, in which coherent fluids are controlled.
We review some of the latest progresses achieved in matter-wave circuits design and atom-chips.
arXiv Detail & Related papers (2020-08-10T22:20:47Z) - Quantum computing with neutral atoms [0.0]
We review the main characteristics of neutral atom quantum processors from atoms / qubits to application interfaces.
We show how applications ranging from optimization challenges to simulation of quantum systems can be explored.
We give evidence of the intrinsic scalability of neutral atom quantum processors in the 100-1,000 qubits range.
arXiv Detail & Related papers (2020-06-22T15:09:01Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.