Atomic Quantum Technologies for Quantum Matter and Fundamental Physics Applications
- URL: http://arxiv.org/abs/2405.06595v1
- Date: Fri, 10 May 2024 16:52:20 GMT
- Title: Atomic Quantum Technologies for Quantum Matter and Fundamental Physics Applications
- Authors: Jorge Yago Malo, Luca Lepori, Laura Gentini, Maria Luisa Chiofalo,
- Abstract summary: Physics is living an era of unprecedented cross-fertilization among the different areas of science.
We discuss the manifold impact that ultracold-atom quantum technologies can have in fundamental and applied science.
We illustrate how the engineering of table-top experiments with atom technologies is engendering applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics is living an era of unprecedented cross-fertilization among the different areas of science. In this perspective review, we discuss the manifold impact that ultracold-atom quantum technologies can have in fundamental and applied science through platforms for quantum simulation, computation, metrology and sensing. We illustrate how the engineering of table-top experiments with atom technologies is engendering applications to understand problems in condensed matter and fundamental physics, cosmology and astrophysics, foundational aspects of quantum mechanics, quantum chemistry and the emerging field of quantum biology. We take the perspective of two main approaches, i.e. creating quantum analogues and building quantum simulators, highlighting that independently of the ultimate goal of a universal quantum computer to be met, the remarkable transformative effects of these achievements remain unchanged. We convey three main messages. First, atomic quantum technologies have enabled a new way in which quantum technologies are used for fundamental science, even beyond the advancement of knowledge, which is characterised by truly cross-disciplinary research, extended interplay between theoretical and experimental thinking, and intersectoral approach. Second, quantum many-body physics is taking the center stage in frontier's science. Third, quantum science progress will have capillary impact on society. Thus, the adoption of a responsible research and innovation approach to quantum technologies is mandatory, to accompany citizens in building awareness and future scaffolding. Following on all these reflections, this perspective review is aimed at scientists active or interested in interdisciplinary research, providing the reader with an overview of the current status of these wide fields of research where ultracold-atomic platforms play a vital role in their description and simulation.
Related papers
- Quantum sensing with atomic, molecular, and optical platforms for fundamental physics [0.611309374994742]
We argue that a compelling long-term vision for fundamental physics and novel applications is to harness the rapid development of quantum information science.
We anticipate that some of the most intriguing and challenging problems, such as quantum aspects of gravity, fundamental symmetries, will be tackled at the emerging quantum measurement frontier.
arXiv Detail & Related papers (2024-05-07T20:56:20Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z) - Quantum Physics in Space [0.0]
Remarkably, a space-based environment may open many new avenues for exploring and employing quantum physics and technologies.
We cover both the fundamental scientific questions that can be tackled with quantum technologies in space and the possible implementation of these technologies for a variety of academic and commercial purposes.
arXiv Detail & Related papers (2021-08-03T12:29:22Z) - Atomtronic circuits: from many-body physics to quantum technologies [0.0]
Atomtronics aims to manipulate ultracold atom moving in matter wave circuits for both fundamental studies in quantum science and technological applications.
We describe the physics of matter-waves in simple circuits such as ring traps and two-terminal systems.
arXiv Detail & Related papers (2021-07-18T23:55:14Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Machine Learning for Quantum Matter [0.0]
We review the recent development and adaptation of machine learning ideas for the purpose advancing research in quantum matter.
We discuss the outlook for future developments in areas at the intersection between machine learning and quantum many-body physics.
arXiv Detail & Related papers (2020-03-24T18:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.