PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis
- URL: http://arxiv.org/abs/2312.12743v1
- Date: Wed, 20 Dec 2023 03:34:48 GMT
- Title: PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis
- Authors: Lipeng Gu, Xuefeng Yan, Liangliang Nan, Dingkun Zhu, Honghua Chen,
Weiming Wang, Mingqiang Wei
- Abstract summary: PointeNet is a network designed specifically for point cloud analysis.
Our method demonstrates flexibility by seamlessly integrating with a classification/segmentation head or embedding into off-the-shelf 3D object detection networks.
Experiments on object-level datasets, including ModelNet40, ScanObjectNN, ShapeNet KITTI, and the scene-level dataset KITTI, demonstrate the superior performance of PointeNet over state-of-the-art methods in point cloud analysis.
- Score: 28.54939134635978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current methodologies in point cloud analysis predominantly explore 3D
geometries, often achieved through the introduction of intricate learnable
geometric extractors in the encoder or by deepening networks with repeated
blocks. However, these approaches inevitably lead to a significant number of
learnable parameters, resulting in substantial computational costs and imposing
memory burdens on CPU/GPU. Additionally, the existing strategies are primarily
tailored for object-level point cloud classification and segmentation tasks,
with limited extensions to crucial scene-level applications, such as autonomous
driving. In response to these limitations, we introduce PointeNet, an efficient
network designed specifically for point cloud analysis. PointeNet distinguishes
itself with its lightweight architecture, low training cost, and plug-and-play
capability, effectively capturing representative features. The network consists
of a Multivariate Geometric Encoding (MGE) module and an optional
Distance-aware Semantic Enhancement (DSE) module. The MGE module employs
operations of sampling, grouping, and multivariate geometric aggregation to
lightweightly capture and adaptively aggregate multivariate geometric features,
providing a comprehensive depiction of 3D geometries. The DSE module, designed
for real-world autonomous driving scenarios, enhances the semantic perception
of point clouds, particularly for distant points. Our method demonstrates
flexibility by seamlessly integrating with a classification/segmentation head
or embedding into off-the-shelf 3D object detection networks, achieving notable
performance improvements at a minimal cost. Extensive experiments on
object-level datasets, including ModelNet40, ScanObjectNN, ShapeNetPart, and
the scene-level dataset KITTI, demonstrate the superior performance of
PointeNet over state-of-the-art methods in point cloud analysis.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Dynamic Clustering Transformer Network for Point Cloud Segmentation [23.149220817575195]
We propose a novel 3D point cloud representation network, called Dynamic Clustering Transformer Network (DCTNet)
It has an encoder-decoder architecture, allowing for both local and global feature learning.
Our method was evaluated on an object-based dataset (ShapeNet), an urban navigation dataset (Toronto-3D), and a multispectral LiDAR dataset.
arXiv Detail & Related papers (2023-05-30T01:11:05Z) - LACV-Net: Semantic Segmentation of Large-Scale Point Cloud Scene via
Local Adaptive and Comprehensive VLAD [13.907586081922345]
We propose an end-to-end deep neural network called LACV-Net for large-scale point cloud semantic segmentation.
The proposed network contains three main components: 1) a local adaptive feature augmentation module (LAFA) to adaptively learn the similarity of centroids and neighboring points to augment the local context; 2) a comprehensive VLAD module that fuses local features with multi-layer, multi-scale, and multi-resolution to represent a comprehensive global description vector; and 3) an aggregation loss function to effectively optimize the segmentation boundaries by constraining the adaptive weight from the LAFA module.
arXiv Detail & Related papers (2022-10-12T02:11:00Z) - Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature
Aggregation [12.093182949686781]
We propose a novel 3D point cloud learning network, referred to as Dynamic Point Feature Aggregation Network (DPFA-Net)
DPFA-Net has two variants for semantic segmentation and classification of 3D point clouds.
It achieves the state-of-the-art overall accuracy score for semantic segmentation on the S3DIS dataset.
arXiv Detail & Related papers (2021-11-14T05:46:05Z) - Learning point embedding for 3D data processing [2.12121796606941]
Current point-based methods are essentially spatial relationship processing networks.
Our architecture, PE-Net, learns the representation of point clouds in high-dimensional space.
Experiments show that PE-Net achieves the state-of-the-art performance in multiple challenging datasets.
arXiv Detail & Related papers (2021-07-19T00:25:28Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - PIG-Net: Inception based Deep Learning Architecture for 3D Point Cloud
Segmentation [0.9137554315375922]
We propose a inception based deep network architecture called PIG-Net, that effectively characterizes the local and global geometric details of the point clouds.
We perform an exhaustive experimental analysis of the PIG-Net architecture on two state-of-the-art datasets.
arXiv Detail & Related papers (2021-01-28T13:27:55Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds [96.51884187479585]
We propose a novel 3D shape signature to explore the shape information from point clouds.
By incorporating operations of symmetry, convex hull and chebyshev fitting, the proposed shape sig-nature is not only compact and effective but also robust to the noise.
Experiments show that the proposed method performs remarkably better than existing methods on two large-scale datasets.
arXiv Detail & Related papers (2020-04-06T16:01:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.