High-Dimensional Simulation Optimization via Brownian Fields and Sparse
Grids
- URL: http://arxiv.org/abs/2107.08595v2
- Date: Tue, 20 Jul 2021 01:57:21 GMT
- Title: High-Dimensional Simulation Optimization via Brownian Fields and Sparse
Grids
- Authors: Liang Ding, Rui Tuo, Xiaowei Zhang
- Abstract summary: High-dimensional simulation optimization is notoriously challenging.
We propose a new sampling algorithm that converges to a global optimal solution.
We show that the proposed algorithm dramatically outperforms typical alternatives in practice.
- Score: 14.15772050249329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High-dimensional simulation optimization is notoriously challenging. We
propose a new sampling algorithm that converges to a global optimal solution
and suffers minimally from the curse of dimensionality. The algorithm consists
of two stages. First, we take samples following a sparse grid experimental
design and approximate the response surface via kernel ridge regression with a
Brownian field kernel. Second, we follow the expected improvement strategy --
with critical modifications that boost the algorithm's sample efficiency -- to
iteratively sample from the next level of the sparse grid. Under mild
conditions on the smoothness of the response surface and the simulation noise,
we establish upper bounds on the convergence rate for both noise-free and noisy
simulation samples. These upper bounds deteriorate only slightly in the
dimension of the feasible set, and they can be improved if the objective
function is known to be of a higher-order smoothness. Extensive numerical
experiments demonstrate that the proposed algorithm dramatically outperforms
typical alternatives in practice.
Related papers
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization [0.0]
We propose a novel algorithm that extends the methods of ball smoothing and Gaussian smoothing for noisy derivative-free optimization.
The algorithm dynamically adapts the shape of the smoothing kernel to approximate the Hessian of the objective function around a local optimum.
arXiv Detail & Related papers (2024-05-02T21:04:20Z) - Improving sample efficiency of high dimensional Bayesian optimization
with MCMC [7.241485121318798]
We propose a new method based on Markov Chain Monte Carlo to efficiently sample from an approximated posterior.
We show experimentally that both the Metropolis-Hastings and the Langevin Dynamics version of our algorithm outperform state-of-the-art methods in high-dimensional sequential optimization and reinforcement learning benchmarks.
arXiv Detail & Related papers (2024-01-05T05:56:42Z) - Optimal Guarantees for Algorithmic Reproducibility and Gradient
Complexity in Convex Optimization [55.115992622028685]
Previous work suggests that first-order methods would need to trade-off convergence rate (gradient convergence rate) for better.
We demonstrate that both optimal complexity and near-optimal convergence guarantees can be achieved for smooth convex minimization and smooth convex-concave minimax problems.
arXiv Detail & Related papers (2023-10-26T19:56:52Z) - Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
Optimization [1.7513645771137178]
We consider unconstrained optimization problems with no available gradient information.
We propose an adaptive sampling quasi-Newton method where we estimate the gradients of a simulation function using finite differences within a common random number framework.
We develop modified versions of a norm test and an inner product quasi-Newton test to control the sample sizes used in the approximations and provide global convergence results to the neighborhood of the optimal solution.
arXiv Detail & Related papers (2021-09-24T21:49:25Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.