Counterdiabatic route for preparation of state with long-range
topological order
- URL: http://arxiv.org/abs/2107.08656v1
- Date: Mon, 19 Jul 2021 07:34:16 GMT
- Title: Counterdiabatic route for preparation of state with long-range
topological order
- Authors: Sanjeev Kumar, Shekhar Sharma, and Vikram Tripathi
- Abstract summary: We propose a strategy for fast preparation of a state with long-range topological order by magnetic field tuning of an initial separable state.
For concreteness, we consider the ground state of the honeycomb Kitaev model whose long-range topological order together with the anyonic excitations make it an interesting candidate for fault-tolerant universal quantum computation and storage.
- Score: 1.6727186769396276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose here a counterdiabatic (CD) strategy for fast preparation of a
state with long-range topological order by magnetic field tuning of an initial
separable state. For concreteness, we consider the ground state of the
honeycomb Kitaev model whose long-range topological order together with the
anyonic excitations make it an interesting candidate for fault-tolerant
universal quantum computation and storage. The required CD perturbation is
found to be local, having the form of the off-diagonal exchange interactions
reminiscent of trigonal deformations in Kitaev Hamiltonians. We show that the
counterdiabatically produced state can have high fidelity and retain numerous
desired entanglement properties.
Related papers
- Exact counterdiabatic driving for finite topological lattice models [0.0]
Counterdiabatic driving is a technique to speed up adiabatic protocols by including additional terms calculated from the instantaneous eigenstates that counter diabatic excitations.
We formulate this approach for all states of lattice models, including bound and in-gap states which appear, e.g., in topological insulators.
The derived analytical counterdiabatic driving Hamiltonian can be utilised to inform control protocols in many-body lattice models or to probe the non-equilibrium properties of lattice models.
arXiv Detail & Related papers (2024-03-18T18:07:33Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Non-perturbative Floquet engineering of the toric-code Hamiltonian and
its ground state [0.0]
We develop a hybrid continuous-digital strategy that exploits the commutativity of different terms in the target Hamiltonian.
A proof-of-principle implementation of a topological device and its use to simulate the topological phase transition are also discussed.
arXiv Detail & Related papers (2022-11-17T17:51:56Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Microscopic dynamics and an effective Landau-Zener transition in the
quasi-adiabatic preparation of spatially ordered states of Rydberg
excitations [0.0]
We study the adiabatic preparation of spatially-ordered Rydberg excitations of atoms in finite one-dimensional lattices by frequency-chirped laser pulses.
Our aims are to unravel the microscopic mechanism of the phase transition from the unexcited state of atoms to the antiferromagnetic-like state of Rydberg excitations.
arXiv Detail & Related papers (2021-11-29T14:32:30Z) - Dissipative preparation of fractional Chern insulators [3.3234256205258084]
We show how Laughlin states can be to good approximation prepared in a dissipative fashion from arbitrary initial states.
We observe a certain robustness regarding the overlap of the steady state with fractional quantum Hall states for experimentally well-controlled flux densities.
arXiv Detail & Related papers (2021-08-23T18:00:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Unitary preparation of many body Chern insulators: Adiabatic bulk
boundary correspondence [14.4034719868008]
We prepare an out-of-equilibrium many-body Chern insulator (CI) and associated bulk-boundary correspondence unitarily.
We show that a non-linear ramp may work more efficiently in approaching the topological state.
We also compute the edge current in the time evolved state of the system under a semi-periodic boundary condition.
arXiv Detail & Related papers (2020-05-04T13:14:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.