Arrival time from the general theory of quantum time distributions
- URL: http://arxiv.org/abs/2107.08777v3
- Date: Fri, 20 May 2022 10:15:51 GMT
- Title: Arrival time from the general theory of quantum time distributions
- Authors: Tajron Juri\'c, Hrvoje Nikoli\'c
- Abstract summary: We develop the general theory of quantum time distributions introduced in arXiv:2010.07575.
We apply it to find the distribution of arrival times at the detector.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We further develop the general theory of quantum time distributions
introduced in arXiv:2010.07575 and apply it to find the distribution of arrival
times at the detector. Even though the Hamiltonian in the absence of detector
is hermitian, the time evolution of the system before detection involves
dealing with a non-hermitian operator obtained from the projection of the
hermitian Hamiltonian onto the region in front of the detector. Such a
formalism eventually gives rise to a simple and physically sensible analytical
expression for the arrival time distribution, for arbitrary wave packet moving
in one spatial dimension with negligible distortion.
Related papers
- Arrival Times Versus Detection Times [0.0]
How to compute the probability distribution of a detection time is a long-debated problem.
We explain why certain distributions that Das and D"urr presented as the distribution of the detection time in a case with spin, is actually not what Bohmian mechanics predicts.
arXiv Detail & Related papers (2024-05-07T18:43:14Z) - Non-local interference in arrival time [0.0]
A non-local interference in the arrival time distribution is observed using entangled atom pairs.
We show that there is a complementary relationship between the one-particle and two-particle interference visibilities in the arrival time distribution.
arXiv Detail & Related papers (2023-07-03T18:26:56Z) - Entanglement entropy in conformal quantum mechanics [68.8204255655161]
We consider sets of states in conformal quantum mechanics associated to generators of time evolution whose orbits cover different regions of the time domain.
States labelled by a continuous global time variable define the two-point correlation functions of the theory seen as a one-dimensional conformal field theory.
arXiv Detail & Related papers (2023-06-21T14:21:23Z) - Scattering Times of Quantum Particles from the Gravitational Potential,
and Equivalence Principle Violation [0.0]
Universality of motion under gravity, the equivalence principle, is violated for quantum particles.
We study time it takes for a quantum particle to scatter from the gravitational potential, and show that the scattering time acts as an indicator of the equivalence principle violation.
arXiv Detail & Related papers (2022-08-11T01:45:32Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Localized non-relativistic quantum systems in curved spacetimes: a
general characterization of particle detector models [0.0]
We provide a consistent way of describing a localized non-relativistic quantum system undergoing a timelike trajectory in a curved spacetime.
This framework naturally provides a recipe for mapping a quantum theory defined in a non-relativistic background to a theory around a timelike trajectory in curved spacetimes.
We then apply our formalism to particle detector models, that is, to the case where the non-relativistic quantum system is coupled to a quantum field in a curved background.
arXiv Detail & Related papers (2022-06-02T18:00:31Z) - Quantum Dynamics under continuous projective measurements: non-Hermitian
description and the continuous space limit [0.0]
The time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol.
For a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian.
arXiv Detail & Related papers (2020-12-02T13:29:22Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.