Unsupervised Identification of Relevant Prior Cases
- URL: http://arxiv.org/abs/2107.08973v1
- Date: Mon, 19 Jul 2021 15:41:49 GMT
- Title: Unsupervised Identification of Relevant Prior Cases
- Authors: Shivangi Bithel, Sumitra S Malagi
- Abstract summary: We propose different unsupervised approaches to solve the task of identifying relevant precedents to a given query case.
Our proposed approaches are using word embeddings like word2vec, doc2vec, and sent2vec, finding cosine similarity using TF-IDF, retrieving relevant documents using BM25 scores, using the pre-trained model and SBERT to find the most similar document.
Based on the comparative analysis, we found that the TF-IDF score multiplied by the BM25 score gives the best result.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document retrieval has taken its role in almost all domains of knowledge
understanding, including the legal domain. Precedent refers to a court decision
that is considered as authority for deciding subsequent cases involving
identical or similar facts or similar legal issues. In this work, we propose
different unsupervised approaches to solve the task of identifying relevant
precedents to a given query case. Our proposed approaches are using word
embeddings like word2vec, doc2vec, and sent2vec, finding cosine similarity
using TF-IDF, retrieving relevant documents using BM25 scores, using the
pre-trained model and SBERT to find the most similar document, and using the
product of BM25 and TF-IDF scores to find the most relevant document for a
given query. We compared all the methods based on precision@10, recall@10, and
MRR. Based on the comparative analysis, we found that the TF-IDF score
multiplied by the BM25 score gives the best result. In this paper, we have also
presented the analysis that we did to improve the BM25 score.
Related papers
- BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
Many complex real-world queries require in-depth reasoning to identify relevant documents.
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.
Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
Contradiction retrieval refers to identifying and extracting documents that explicitly disagree with or refute the content of a query.
Existing methods such as similarity search and crossencoder models exhibit significant limitations.
We introduce SparseCL that leverages specially trained sentence embeddings designed to preserve subtle, contradictory nuances between sentences.
arXiv Detail & Related papers (2024-06-15T21:57:03Z) - Natural Logic-guided Autoregressive Multi-hop Document Retrieval for
Fact Verification [21.04611844009438]
We propose a novel retrieve-and-rerank method for multi-hop retrieval.
It consists of a retriever that jointly scores documents in the knowledge source and sentences from previously retrieved documents.
It is guided by a proof system that dynamically terminates the retrieval process if the evidence is deemed sufficient.
arXiv Detail & Related papers (2022-12-10T11:32:38Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
Document-level relation extraction (DocRE) aims to determine the relation between two entities from a document of multiple sentences.
We propose a Sentence Estimation and Focusing (SIEF) framework for DocRE, where we design a sentence importance score and a sentence focusing loss.
Experimental results on two domains show that our SIEF not only improves overall performance, but also makes DocRE models more robust.
arXiv Detail & Related papers (2022-04-27T03:20:07Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
We present a framework for improving the performance of a wide class of retrieval models at minimal computational cost.
It utilizes precomputed document representations extracted by a base dense retrieval method.
It incurs a negligible computational overhead on top of any first-stage method at run time, allowing it to be easily combined with any state-of-the-art dense retrieval method.
arXiv Detail & Related papers (2021-12-16T10:25:26Z) - Eider: Evidence-enhanced Document-level Relation Extraction [56.71004595444816]
Document-level relation extraction (DocRE) aims at extracting semantic relations among entity pairs in a document.
We propose a three-stage evidence-enhanced DocRE framework consisting of joint relation and evidence extraction, evidence-centered relation extraction (RE), and fusion of extraction results.
arXiv Detail & Related papers (2021-06-16T09:43:16Z) - Aspect-based Document Similarity for Research Papers [4.661692753666685]
We extend similarity with aspect information by performing a pairwise document classification task.
We evaluate our aspect-based document similarity for research papers.
Our results show SciBERT as the best performing system.
arXiv Detail & Related papers (2020-10-13T13:51:21Z) - Pairwise Multi-Class Document Classification for Semantic Relations
between Wikipedia Articles [5.40541521227338]
We model the problem of finding the relationship between two documents as a pairwise document classification task.
To find semantic relation between documents, we apply a series of techniques, such as GloVe, paragraph-s, BERT, and XLNet.
We perform our experiments on a newly proposed dataset of 32,168 Wikipedia article pairs and Wikidata properties that define the semantic document relations.
arXiv Detail & Related papers (2020-03-22T12:52:56Z) - Pre-training Tasks for Embedding-based Large-scale Retrieval [68.01167604281578]
We consider the large-scale query-document retrieval problem.
Given a query (e.g., a question), return the set of relevant documents from a large document corpus.
We show that the key ingredient of learning a strong embedding-based Transformer model is the set of pre-training tasks.
arXiv Detail & Related papers (2020-02-10T16:44:00Z) - Semantic Sensitive TF-IDF to Determine Word Relevance in Documents [0.0]
We propose STF-IDF, a novel semantic method based on TF-IDF, for scoring word importance of informal documents in a corpus.
Our method managed to decrease the TF-IDF mean error rate by a factor of 50% and reaching the mean error of 13.7%, as opposed to 27.2% of the original TF-IDF.
arXiv Detail & Related papers (2020-01-06T00:23:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.