Hierarchical Few-Shot Imitation with Skill Transition Models
- URL: http://arxiv.org/abs/2107.08981v1
- Date: Mon, 19 Jul 2021 15:56:01 GMT
- Title: Hierarchical Few-Shot Imitation with Skill Transition Models
- Authors: Kourosh Hakhamaneshi, Ruihan Zhao, Albert Zhan, Pieter Abbeel, Michael
Laskin
- Abstract summary: Few-shot Imitation with Skill Transition Models (FIST) is an algorithm that extracts skills from offline data and utilizes them to generalize to unseen tasks.
We show that FIST is capable of generalizing to new tasks and substantially outperforms prior baselines in navigation experiments.
- Score: 66.81252581083199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A desirable property of autonomous agents is the ability to both solve
long-horizon problems and generalize to unseen tasks. Recent advances in
data-driven skill learning have shown that extracting behavioral priors from
offline data can enable agents to solve challenging long-horizon tasks with
reinforcement learning. However, generalization to tasks unseen during
behavioral prior training remains an outstanding challenge. To this end, we
present Few-shot Imitation with Skill Transition Models (FIST), an algorithm
that extracts skills from offline data and utilizes them to generalize to
unseen tasks given a few downstream demonstrations. FIST learns an inverse
skill dynamics model, a distance function, and utilizes a semi-parametric
approach for imitation. We show that FIST is capable of generalizing to new
tasks and substantially outperforms prior baselines in navigation experiments
requiring traversing unseen parts of a large maze and 7-DoF robotic arm
experiments requiring manipulating previously unseen objects in a kitchen.
Related papers
- Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal [54.93261535899478]
In real-world applications, such as robotic control of reinforcement learning, the tasks are changing, and new tasks arise in a sequential order.
This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge.
We propose a rehearsal-based continual diffusion model, called Continual diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability)
arXiv Detail & Related papers (2024-09-04T08:21:47Z) - Self-Supervised Reinforcement Learning that Transfers using Random
Features [41.00256493388967]
We propose a self-supervised reinforcement learning method that enables the transfer of behaviors across tasks with different rewards.
Our method is self-supervised in that it can be trained on offline datasets without reward labels, but can then be quickly deployed on new tasks.
arXiv Detail & Related papers (2023-05-26T20:37:06Z) - Learning and Retrieval from Prior Data for Skill-based Imitation
Learning [47.59794569496233]
We develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data.
We identify several key design choices that significantly improve performance on novel tasks.
arXiv Detail & Related papers (2022-10-20T17:34:59Z) - Generalizing to New Tasks via One-Shot Compositional Subgoals [23.15624959305799]
The ability to generalize to previously unseen tasks with little to no supervision is a key challenge in modern machine learning research.
We introduce CASE which attempts to address these issues by training an Imitation Learning agent using adaptive "near future" subgoals.
Our experiments show that the proposed approach consistently outperforms the previous state-of-the-art compositional Imitation Learning approach by 30%.
arXiv Detail & Related papers (2022-05-16T14:30:11Z) - ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically
Simulated Characters [123.88692739360457]
General-purpose motor skills enable humans to perform complex tasks.
These skills also provide powerful priors for guiding their behaviors when learning new tasks.
We present a framework for learning versatile and reusable skill embeddings for physically simulated characters.
arXiv Detail & Related papers (2022-05-04T06:13:28Z) - Example-Driven Model-Based Reinforcement Learning for Solving
Long-Horizon Visuomotor Tasks [85.56153200251713]
We introduce EMBR, a model-based RL method for learning primitive skills that are suitable for completing long-horizon visuomotor tasks.
On a Franka Emika robot arm, we find that EMBR enables the robot to complete three long-horizon visuomotor tasks at 85% success rate.
arXiv Detail & Related papers (2021-09-21T16:48:07Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
We present a meta-reinforcement learning algorithm that is both efficient and extrapolates well when faced with out-of-distribution tasks at test time.
Our method is based on a simple insight: we recognize that dynamics models can be adapted efficiently and consistently with off-policy data.
arXiv Detail & Related papers (2020-06-12T13:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.