Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal
- URL: http://arxiv.org/abs/2409.02512v1
- Date: Wed, 4 Sep 2024 08:21:47 GMT
- Title: Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal
- Authors: Jifeng Hu, Li Shen, Sili Huang, Zhejian Yang, Hechang Chen, Lichao Sun, Yi Chang, Dacheng Tao,
- Abstract summary: In real-world applications, such as robotic control of reinforcement learning, the tasks are changing, and new tasks arise in a sequential order.
This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge.
We propose a rehearsal-based continual diffusion model, called Continual diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability)
- Score: 54.93261535899478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks, especially recent diffusion-based models, have shown remarkable superiority in gaming, control, and QA systems, where the training tasks' datasets are usually static. However, in real-world applications, such as robotic control of reinforcement learning (RL), the tasks are changing, and new tasks arise in a sequential order. This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge. In view of this, we propose a rehearsal-based continual diffusion model, called Continual Diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability). Specifically, we first construct an offline benchmark that contains 90 tasks from multiple domains. Then, we train the CoD on each task with sequential modeling and conditional generation for making decisions. Next, we preserve a small portion of previous datasets as the rehearsal buffer and replay it to retain the acquired knowledge. Extensive experiments on a series of tasks show CoD can achieve a promising plasticity-stability trade-off and outperform existing diffusion-based methods and other representative baselines on most tasks.
Related papers
- Continual Offline Reinforcement Learning via Diffusion-based Dual Generative Replay [16.269591842495892]
We study a practical paradigm that facilitates forward transfer and mitigates catastrophic forgetting to tackle sequential offline tasks.
We propose a dual generative replay framework that retains previous knowledge by concurrent replay of generated pseudo-data.
arXiv Detail & Related papers (2024-04-16T15:39:11Z) - Solving Continual Offline Reinforcement Learning with Decision Transformer [78.59473797783673]
Continuous offline reinforcement learning (CORL) combines continuous and offline reinforcement learning.
Existing methods, employing Actor-Critic structures and experience replay (ER), suffer from distribution shifts, low efficiency, and weak knowledge-sharing.
We introduce multi-head DT (MH-DT) and low-rank adaptation DT (LoRA-DT) to mitigate DT's forgetting problem.
arXiv Detail & Related papers (2024-01-16T16:28:32Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Learning to Modulate pre-trained Models in RL [22.812215561012874]
Fine-tuning a pre-trained model often suffers from catastrophic forgetting.
Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly.
We propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model.
arXiv Detail & Related papers (2023-06-26T17:53:05Z) - OER: Offline Experience Replay for Continual Offline Reinforcement Learning [25.985985377992034]
Continuously learning new skills via a sequence of pre-collected offline datasets is desired for an agent.
In this paper, we formulate a new setting, continual offline reinforcement learning (CORL), where an agent learns a sequence of offline reinforcement learning tasks.
We propose a new model-based experience selection scheme to build the replay buffer, where a transition model is learned to approximate the state distribution.
arXiv Detail & Related papers (2023-05-23T08:16:44Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Hierarchical Few-Shot Imitation with Skill Transition Models [66.81252581083199]
Few-shot Imitation with Skill Transition Models (FIST) is an algorithm that extracts skills from offline data and utilizes them to generalize to unseen tasks.
We show that FIST is capable of generalizing to new tasks and substantially outperforms prior baselines in navigation experiments.
arXiv Detail & Related papers (2021-07-19T15:56:01Z) - Generative Feature Replay with Orthogonal Weight Modification for
Continual Learning [20.8966035274874]
generative replay is a promising strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting.
We propose to replay penultimate layer feature with a generative model; 2) leverage a self-supervised auxiliary task to further enhance the stability of feature.
Empirical results on several datasets show our method always achieves substantial improvement over powerful OWM.
arXiv Detail & Related papers (2020-05-07T13:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.