論文の概要: Just Train Twice: Improving Group Robustness without Training Group
Information
- arxiv url: http://arxiv.org/abs/2107.09044v1
- Date: Mon, 19 Jul 2021 17:52:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-20 15:20:44.634387
- Title: Just Train Twice: Improving Group Robustness without Training Group
Information
- Title(参考訳): Just Train Twice: グループ情報のトレーニングなしでグループロバスト性を改善する
- Authors: Evan Zheran Liu, Behzad Haghgoo, Annie S. Chen, Aditi Raghunathan,
Pang Wei Koh, Shiori Sagawa, Percy Liang, Chelsea Finn
- Abstract要約: 経験的リスク最小化による標準トレーニングは、特定のグループにおける平均的かつ低い精度で高い精度を達成するモデルを生成することができる。
群分布的ロバストな最適化 (group DRO) のような、最悪のグループ精度を達成する以前のアプローチでは、トレーニングポイントごとに高価なグループアノテーションが必要である。
本稿では,複数のエポックに対して標準的なERMモデルを訓練し,第1モデルが誤分類したトレーニング例を重み付けする第2モデルを訓練する,単純な2段階のアプローチであるJTTを提案する。
- 参考スコア(独自算出の注目度): 101.84574184298006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard training via empirical risk minimization (ERM) can produce models
that achieve high accuracy on average but low accuracy on certain groups,
especially in the presence of spurious correlations between the input and
label. Prior approaches that achieve high worst-group accuracy, like group
distributionally robust optimization (group DRO) require expensive group
annotations for each training point, whereas approaches that do not use such
group annotations typically achieve unsatisfactory worst-group accuracy. In
this paper, we propose a simple two-stage approach, JTT, that first trains a
standard ERM model for several epochs, and then trains a second model that
upweights the training examples that the first model misclassified.
Intuitively, this upweights examples from groups on which standard ERM models
perform poorly, leading to improved worst-group performance. Averaged over four
image classification and natural language processing tasks with spurious
correlations, JTT closes 75% of the gap in worst-group accuracy between
standard ERM and group DRO, while only requiring group annotations on a small
validation set in order to tune hyperparameters.
- Abstract(参考訳): 経験的リスク最小化(ERM)による標準トレーニングは、特に入力とラベルの間に急激な相関が存在する場合に、特定のグループで平均的かつ低い精度で高い精度を達成するモデルを生成することができる。
群分布的ロバストな最適化 (group DRO) のような、高い最悪のグループ精度を達成する以前のアプローチでは、トレーニングポイントごとに高価なグループアノテーションが必要であるが、そのようなグループアノテーションを使用しないアプローチは通常、満足のいく最悪のグループ精度を達成する。
本稿では,複数のエポックに対して標準ERMモデルを訓練し,次に第1モデルが誤分類したトレーニング例を重み付けする第2モデルを訓練する,単純な2段階アプローチであるJTTを提案する。
直感的には、このアップウェイトは標準ERMモデルが不十分なグループの例であり、最悪のグループのパフォーマンスが向上する。
jttは4つ以上の画像分類と自然言語処理タスクをスプリアス相関で平均し、標準ermとグループdroの間の最悪のグループ精度の75%を閉じる一方で、ハイパーパラメータをチューニングするために小さな検証セットにグループアノテーションを必要とする。
関連論文リスト
- Trained Models Tell Us How to Make Them Robust to Spurious Correlation without Group Annotation [3.894771553698554]
経験的リスク最小化(ERM)モデルは、ターゲットと高い刺激的な相関を持つ属性に依存する傾向がある。
これにより、これらの属性を欠いた未表現(または'マイナー')グループのパフォーマンスを低下させることができる。
本稿では,環境に基づく検証と損失に基づくサンプリング(EVaLS)を提案する。
論文 参考訳(メタデータ) (2024-10-07T08:17:44Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
本稿では,新しい2段階学習アルゴリズムであるBAMを提案する。
第1段階では、各トレーニングサンプルに対して学習可能な補助変数を導入することにより、バイアス増幅方式を用いてモデルを訓練する。
第2段階では、バイアス増幅モデルが誤分類したサンプルを重み付けし、その後、再重み付けされたデータセット上で同じモデルをトレーニングし続けます。
論文 参考訳(メタデータ) (2023-09-13T04:40:08Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
群分布的ロバスト最適化(群 DRO)は、事前定義された群に対する最悪の損失を最小限にすることができる。
グループDROフレームワークをQ-Diversityを提案して再構築する。
インタラクティブなトレーニングモードによって特徴付けられるQ-Diversityは、アノテーションからグループ識別を緩和し、直接パラメータ化を行う。
論文 参考訳(メタデータ) (2023-05-20T07:02:27Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
本研究では,DRU(Discounted Rank Upweighting)と呼ばれるランキングベースのトレーニング手法を提案し,テストデータ上で強力なOOD性能を示すモデルを学習する。
いくつかの合成および実世界のデータセットの結果は、群分布シフトに頑健なモデルの選択と学習において、グループレベルの(ソフトミニマックスと異なり)アプローチの優れた能力を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-05-09T20:37:16Z) - AGRO: Adversarial Discovery of Error-prone groups for Robust
Optimization [109.91265884632239]
群分散ロバスト最適化(G-DRO)は、トレーニングデータに対する事前定義されたグループのセットに対する最悪の損失を最小限にすることができる。
本稿では、分散ロバスト最適化のためのAGRO -- Adversarial Group Discoveryを提案する。
AGROは、既知の最悪のグループの平均モデルパフォーマンスを8%向上させる。
論文 参考訳(メタデータ) (2022-12-02T00:57:03Z) - Take One Gram of Neural Features, Get Enhanced Group Robustness [23.541213868620837]
経験的リスク最小化で訓練された機械学習モデルの予測性能は、分散シフト下で大幅に低下する可能性がある。
本稿では,識別モデルの抽出した特徴の文法行列に基づいて,トレーニングデータセットをグループに分割する。
このアプローチは、ERMに対するグループロバスト性を向上するだけでなく、最近のすべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2022-08-26T12:34:55Z) - Improved Group Robustness via Classifier Retraining on Independent
Splits [6.930560177764658]
群分布的ロバスト最適化は、強力な最悪群性能を持つ学習モデルのベースラインとして広く使われている。
本稿では,トレーニングデータの独立分割に基づくリトレーニングのアイデアに基づいて,簡単な手法を設計する。
新たなサンプル分割手法を用いることで、微調整工程において、ロバストな最悪のグループ性能が得られることが判明した。
論文 参考訳(メタデータ) (2022-04-20T16:22:27Z) - Correct-N-Contrast: A Contrastive Approach for Improving Robustness to
Spurious Correlations [59.24031936150582]
豪華な相関関係は、堅牢な機械学習にとって大きな課題となる。
経験的リスク最小化(ERM)で訓練されたモデルは、クラスラベルとスプリアス属性の相関に依存することを学習することができる。
CNC(Correct-N-Contrast, Correct-N-Contrast)を提案する。
論文 参考訳(メタデータ) (2022-03-03T05:03:28Z) - Focus on the Common Good: Group Distributional Robustness Follows [47.62596240492509]
本稿では,多様なグループ間で共有される特徴の学習を明示的に促進する,新しい,シンプルなアルゴリズムを提案する。
グループDROは、最低の正規化損失を持つグループに焦点を当て、代わりに、他のグループでもより良いパフォーマンスを実現するグループに焦点を当てるが、共有/共通機能を学ぶことにつながる可能性がある。
論文 参考訳(メタデータ) (2021-10-06T09:47:41Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。