論文の概要: Reconstruction of the Density Power Spectrum from Quasar Spectra using
Machine Learning
- arxiv url: http://arxiv.org/abs/2107.09082v1
- Date: Mon, 19 Jul 2021 18:00:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-22 01:41:03.761656
- Title: Reconstruction of the Density Power Spectrum from Quasar Spectra using
Machine Learning
- Title(参考訳): 機械学習によるクエーサースペクトルからの密度パワースペクトルの再構成
- Authors: Maria Han Veiga, Xi Meng, Oleg Y. Gnedin, Nickolay Y. Gnedin and Xun
Huan
- Abstract要約: 我々は,総物質密度のパワースペクトルを予測するために,一連のデータ駆動モデルを構築した。
我々は、波長$k leq 2 h Mpc-1$に対して約1%の精度で再現できるモデルを作成し、誤差はより大きい$k$で増大する。
- 参考スコア(独自算出の注目度): 0.26249027950824505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a novel end-to-end approach using Machine Learning to reconstruct
the power spectrum of cosmological density perturbations at high redshift from
observed quasar spectra. State-of-the-art cosmological simulations of structure
formation are used to generate a large synthetic dataset of line-of-sight
absorption spectra paired with 1-dimensional fluid quantities along the same
line-of-sight, such as the total density of matter and the density of neutral
atomic hydrogen. With this dataset, we build a series of data-driven models to
predict the power spectrum of total matter density. We are able to produce
models which yield reconstruction to accuracy of about 1% for wavelengths $k
\leq 2 h Mpc^{-1}$, while the error increases at larger $k$. We show the size
of data sample required to reach a particular error rate, giving a sense of how
much data is necessary to reach a desired accuracy. This work provides a
foundation for developing methods to analyse very large upcoming datasets with
the next-generation observational facilities.
- Abstract(参考訳): 観測されたクエーサースペクトルから高赤方偏移の宇宙密度摂動のパワースペクトルを再構成するために機械学習を用いた新しいエンドツーエンドアプローチについて述べる。
構造形成の最先端の宇宙学シミュレーションを用いて、物質の総密度や中性水素の密度など、同じ視線に沿って1次元の流体量と対の1次元の吸光スペクトルの大規模な合成データセットを生成する。
このデータセットを用いて,物質密度のパワースペクトルを予測するデータ駆動モデルを構築した。
我々は、波長$k \leq 2 h Mpc^{-1}$に対して約1%の精度で再現できるモデルを作成することができるが、誤差はより大きい$k$で増大する。
特定の誤差率に達するのに必要なデータサンプルのサイズを示し、所望の精度に到達するのにどれだけのデータが必要なのかを知覚する。
この研究は、次世代の観測施設で非常に大きなデータセットを分析する方法を開発するための基盤を提供する。
関連論文リスト
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
近似を行なわずに1秒で完全なBNS推論を行う機械学習フレームワークを提案する。
本手法は, (i) 合併前の正確な局所化を提供することにより, (i) 近似低遅延法と比較して, (ii) 局所化精度を$sim30%$で改善すること, (iii) 光度距離, 傾斜, 質量に関する詳細な情報を提供することにより, (i) マルチメーサの観測を向上する。
論文 参考訳(メタデータ) (2024-07-12T18:00:02Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Efficiently predicting high resolution mass spectra with graph neural
networks [28.387227518307604]
質量スペクトルから小さな分子を同定することは、計算メタボロミクスにおける主要な開問題である。
未知のスペクトルは、化学構造の大規模なデータベースから予測されるスペクトルと一致している。
我々は、入力分子グラフから分子式上の確率分布への写像としてスペクトル予測をキャストすることで、このトレードオフを解決する。
論文 参考訳(メタデータ) (2023-01-26T21:10:26Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
我々は、リカレント推論マシンに基づくニューラルネットワークを用いて、背景画像の歪みのない画像と、画素マップとしてのレンズ質量密度分布を再構成する。
従来のパラメトリックモデルと比較して、提案手法はより表現力が高く、複雑な質量分布を再構成することができる。
論文 参考訳(メタデータ) (2023-01-10T19:00:12Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Electronic-structure properties from atom-centered predictions of the
electron density [0.0]
分子や物質の電子密度は、最近機械学習モデルのターゲット量として大きな注目を集めている。
最適化された高度にスパースな特徴空間における回帰問題の損失関数を最小化するための勾配に基づく手法を提案する。
予測密度から1つのコーン・シャム対角化ステップを実行し、0.1mV/原子の誤差を持つ全エネルギー成分にアクセス可能であることを示す。
論文 参考訳(メタデータ) (2022-06-28T15:35:55Z) - Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN) [0.0]
本稿では、最近開発されたAtomistic Line Graph Neural Network(ALIGNN)を拡張して、大量の材料ユニットセル構造のDOSを正確に予測する。
本研究では, 直接離散化スペクトルと, オートエンコーダを用いた圧縮低次元表現の2つの方法を評価する。
論文 参考訳(メタデータ) (2022-01-20T18:28:22Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
我々は、通過する太陽系外惑星のスペクトルデータを解析するための教師なし手法に焦点をあてる。
スペクトルデータには、適切な低次元表現を要求する高い相関関係があることが示される。
主成分に基づく興味深い構造、すなわち、異なる化学状態に対応する明確に定義された分岐を明らかにする。
論文 参考訳(メタデータ) (2022-01-07T22:26:33Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
本研究では,HARPS-N線速度スペクトルから高精度の太陽スペクトルを抽出するニューラルネットワークオートエンコーダ手法を提案する。
論文 参考訳(メタデータ) (2021-11-17T12:54:48Z) - Neural density estimation and uncertainty quantification for laser
induced breakdown spectroscopy spectra [4.698576003197588]
構造付きスペクトル潜在空間上の正規化フローを用いて確率密度を推定する。
観測されていない状態ベクトルを予測する際に不確実性定量化法を評価する。
火星探査機キュリオシティが収集したレーザー誘起分解分光データに本手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-08-17T01:10:29Z) - Cycle-StarNet: Bridging the gap between theory and data by leveraging
large datasets [0.0]
現在のスペクトル分析の自動化手法は、(a)データ駆動であり、恒星パラメータと元素の存在量の事前の知識を必要とするか、(b)理論と実践のギャップに影響を受けやすい理論合成モデルに基づくかのいずれかである。
本研究では、シミュレーションされた恒星スペクトルを、教師なし学習を大規模分光サーベイに適用することにより、現実的なスペクトルに変換するハイブリッドな生成領域適応法を提案する。
論文 参考訳(メタデータ) (2020-07-06T23:06:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。