Sequence-to-Sequence Piano Transcription with Transformers
- URL: http://arxiv.org/abs/2107.09142v1
- Date: Mon, 19 Jul 2021 20:33:09 GMT
- Title: Sequence-to-Sequence Piano Transcription with Transformers
- Authors: Curtis Hawthorne, Ian Simon, Rigel Swavely, Ethan Manilow, Jesse Engel
- Abstract summary: We show that equivalent performance can be achieved using a generic encoder-decoder Transformer with standard decoding methods.
We demonstrate that the model can learn to translate spectrogram inputs directly to MIDI-like output events for several transcription tasks.
- Score: 6.177271244427368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic Music Transcription has seen significant progress in recent years
by training custom deep neural networks on large datasets. However, these
models have required extensive domain-specific design of network architectures,
input/output representations, and complex decoding schemes. In this work, we
show that equivalent performance can be achieved using a generic
encoder-decoder Transformer with standard decoding methods. We demonstrate that
the model can learn to translate spectrogram inputs directly to MIDI-like
output events for several transcription tasks. This sequence-to-sequence
approach simplifies transcription by jointly modeling audio features and
language-like output dependencies, thus removing the need for task-specific
architectures. These results point toward possibilities for creating new Music
Information Retrieval models by focusing on dataset creation and labeling
rather than custom model design.
Related papers
- Encoding Agent Trajectories as Representations with Sequence Transformers [0.4999814847776097]
We propose a model for representing high dimensional trajectories with neural-based network architecture.
Similar to language models, our Transformer Sequence for Agent temporal Representations (STARE) model can learn representations and structure in trajectory data.
We present experimental results on various synthetic and real trajectory datasets and show that our proposed model can learn meaningful encodings.
arXiv Detail & Related papers (2024-10-11T19:18:47Z) - YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation [15.9795868183084]
Multi-instrument music transcription aims to convert polyphonic music recordings into musical scores assigned to each instrument.
This paper introduces YourMT3+, a suite of models for enhanced multi-instrument music transcription.
Our experiments demonstrate direct vocal transcription capabilities, eliminating the need for voice separation pre-processors.
arXiv Detail & Related papers (2024-07-05T19:18:33Z) - Timbre-Trap: A Low-Resource Framework for Instrument-Agnostic Music
Transcription [19.228155694144995]
Timbre-Trap is a novel framework which unifies music transcription and audio reconstruction.
We train a single autoencoder to simultaneously estimate pitch salience and reconstruct complex spectral coefficients.
We demonstrate that the framework leads to performance comparable to state-of-the-art instrument-agnostic transcription methods.
arXiv Detail & Related papers (2023-09-27T15:19:05Z) - Multitrack Music Transcription with a Time-Frequency Perceiver [6.617487928813374]
Multitrack music transcription aims to transcribe a music audio input into the musical notes of multiple instruments simultaneously.
We propose a novel deep neural network architecture, Perceiver TF, to model the time-frequency representation of audio input for multitrack transcription.
arXiv Detail & Related papers (2023-06-19T08:58:26Z) - MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers [78.85346970193518]
Megabyte is a multi-scale decoder architecture that enables end-to-end differentiable modeling of sequences of over one million bytes.
Experiments show that Megabyte allows byte-level models to perform competitively with subword models on long context language modeling.
Results establish the viability of tokenization-free autoregressive sequence modeling at scale.
arXiv Detail & Related papers (2023-05-12T00:55:41Z) - Transfer of knowledge among instruments in automatic music transcription [2.0305676256390934]
This work shows how to employ easily generated synthesized audio data produced by software synthesizers to train a universal model.
It is a good base for further transfer learning to quickly adapt transcription model for other instruments.
arXiv Detail & Related papers (2023-04-30T08:37:41Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z) - Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [95.02406834386814]
Parti treats text-to-image generation as a sequence-to-sequence modeling problem.
Parti uses a Transformer-based image tokenizer, ViT-VQGAN, to encode images as sequences of discrete tokens.
PartiPrompts (P2) is a new holistic benchmark of over 1600 English prompts.
arXiv Detail & Related papers (2022-06-22T01:11:29Z) - Symphony Generation with Permutation Invariant Language Model [57.75739773758614]
We present a symbolic symphony music generation solution, SymphonyNet, based on a permutation invariant language model.
A novel transformer decoder architecture is introduced as backbone for modeling extra-long sequences of symphony tokens.
Our empirical results show that our proposed approach can generate coherent, novel, complex and harmonious symphony compared to human composition.
arXiv Detail & Related papers (2022-05-10T13:08:49Z) - Cross-Thought for Sentence Encoder Pre-training [89.32270059777025]
Cross-Thought is a novel approach to pre-training sequence encoder.
We train a Transformer-based sequence encoder over a large set of short sequences.
Experiments on question answering and textual entailment tasks demonstrate that our pre-trained encoder can outperform state-of-the-art encoders.
arXiv Detail & Related papers (2020-10-07T21:02:41Z) - Relative Positional Encoding for Speech Recognition and Direct
Translation [72.64499573561922]
We adapt the relative position encoding scheme to the Speech Transformer.
As a result, the network can better adapt to the variable distributions present in speech data.
arXiv Detail & Related papers (2020-05-20T09:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.