Heterogeneous network-based drug repurposing for COVID-19
- URL: http://arxiv.org/abs/2107.09217v1
- Date: Tue, 20 Jul 2021 01:24:40 GMT
- Title: Heterogeneous network-based drug repurposing for COVID-19
- Authors: Shuting Jin, Xiangxiang Zeng, Wei Huang, Feng Xia, Changzhi Jiang,
Xiangrong Liu and Shaoliang Peng
- Abstract summary: The Corona Virus Disease 2019 (COVID-19) belongs to human coronaviruses (HCoVs), which spreads rapidly around the world.
Compared with new drug development, drug repurposing may be the best shortcut for treating COVID-19.
We constructed a comprehensive heterogeneous network based on the HCoVs-related target proteins and use the previously proposed deepDTnet to discover potential drug candidates for COVID-19.
- Score: 7.097880564431694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Corona Virus Disease 2019 (COVID-19) belongs to human coronaviruses
(HCoVs), which spreads rapidly around the world. Compared with new drug
development, drug repurposing may be the best shortcut for treating COVID-19.
Therefore, we constructed a comprehensive heterogeneous network based on the
HCoVs-related target proteins and use the previously proposed deepDTnet, to
discover potential drug candidates for COVID-19. We obtain high performance in
predicting the possible drugs effective for COVID-19 related proteins. In
summary, this work utilizes a powerful heterogeneous network-based deep
learning method, which may be beneficial to quickly identify candidate
repurposable drugs toward future clinical trials for COVID-19. The code and
data are available at https://github.com/stjin-XMU/HnDR-COVID.
Related papers
- Drug Repurposing Targeting COVID-19 3CL Protease using Molecular Docking and Machine Learning Regression Approach [0.15346678870160887]
The COVID-19 pandemic has initiated a global health emergency, with an exigent need for effective cure.
We screened the 5903 approved drugs for their inhibition by targeting the main protease 3CL of SARS-CoV-2.
We employed several machine learning regression approaches for QSAR modeling to find out some potential drugs with high binding affinities.
arXiv Detail & Related papers (2023-05-25T05:34:39Z) - COVID-Net Assistant: A Deep Learning-Driven Virtual Assistant for
COVID-19 Symptom Prediction and Recommendation [75.74756992992147]
We introduce the design of COVID-Net Assistant, an efficient virtual assistant designed to provide symptom prediction and recommendations for COVID-19.
We explore a variety of highly customized, lightweight convolutional neural network architectures generated via machine-driven design exploration.
Our experimental results show promising, with the COVID-Net Assistant neural networks demonstrating robust predictive performance.
arXiv Detail & Related papers (2022-11-22T01:41:48Z) - COVID-Net UV: An End-to-End Spatio-Temporal Deep Neural Network
Architecture for Automated Diagnosis of COVID-19 Infection from Ultrasound
Videos [70.60433013657693]
COVID-Net comprises a convolutional neural network that extracts spatial features and a recurrent neural network that learns temporal dependence.
The network achieves an average accuracy of 94.44% with no false-negative cases for COVID-19 cases.
arXiv Detail & Related papers (2022-05-18T13:59:16Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
arXiv Detail & Related papers (2022-02-08T09:42:08Z) - Identification and validation of Triamcinolone and Gallopamil as
treatments for early COVID-19 via an in silico repurposing pipeline [47.453507636022444]
SARS-CoV-2, the causative virus of COVID-19 continues to cause an ongoing global pandemic.
Drug repurposing provides an opportunity to deploy drugs for COVID-19 more rapidly than developing novel therapeutics.
This in silico study uses structural similarity to clinical trial drugs to identify two drugs with potential applications to treat early COVID-19.
arXiv Detail & Related papers (2021-07-05T13:08:24Z) - Genetic Constrained Graph Variational Autoencoder for COVID-19 Drug
Discovery [0.0]
We propose a new model called Genetic Constrained Graph Variational Autoencoder (GCGVAE) to solve this problem.
We trained our model based on the data of various viruses' protein structure, including that of the SARS, HIV, Hep3, and MERS, and used it to generate possible drugs for SARS-CoV-2.
Our generated molecules have great effectiveness in inhibiting SARS-CoV-2.
arXiv Detail & Related papers (2021-04-23T16:10:15Z) - Dr-COVID: Graph Neural Networks for SARS-CoV-2 Drug Repurposing [14.112444998191698]
We propose a dedicated graph neural network (GNN) based drug repurposing model, called Dr-COVID.
Dr-COVID is evaluated in terms of its prediction performance and its ability to rank the known treatment drugs for diseases as high as possible.
arXiv Detail & Related papers (2020-12-03T18:34:10Z) - Drug repurposing for COVID-19 using graph neural network and harmonizing
multiple evidence [9.472330151855111]
We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes.
We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and electronic health records.
arXiv Detail & Related papers (2020-09-23T04:47:59Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Repurpose Open Data to Discover Therapeutics for COVID-19 using Deep
Learning [22.01390057543923]
There have been more than 850,000 confirmed cases and over 48,000 deaths from the human coronavirus disease 2019 (COVID-19) pandemic.
There are currently no proven effective medications against COVID-19.
This study reports an integrative, network-based deep learning methodology to identify repurposable drugs for COVID-19.
arXiv Detail & Related papers (2020-05-21T16:02:29Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.