Deep learning for drug repurposing: methods, databases, and applications
- URL: http://arxiv.org/abs/2202.05145v1
- Date: Tue, 8 Feb 2022 09:42:08 GMT
- Title: Deep learning for drug repurposing: methods, databases, and applications
- Authors: Xiaoqin Pan, Xuan Lin, Dongsheng Cao, Xiangxiang Zeng, Philip S. Yu,
Lifang He, Ruth Nussinov, Feixiong Cheng
- Abstract summary: Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
- Score: 54.08583498324774
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Drug development is time-consuming and expensive. Repurposing existing drugs
for new therapies is an attractive solution that accelerates drug development
at reduced experimental costs, specifically for Coronavirus Disease 2019
(COVID-19), an infectious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). However, comprehensively obtaining and productively
integrating available knowledge and big biomedical data to effectively advance
deep learning models is still challenging for drug repurposing in other complex
diseases. In this review, we introduce guidelines on how to utilize deep
learning methodologies and tools for drug repurposing. We first summarized the
commonly used bioinformatics and pharmacogenomics databases for drug
repurposing. Next, we discuss recently developed sequence-based and graph-based
representation approaches as well as state-of-the-art deep learning-based
methods. Finally, we present applications of drug repurposing to fight the
COVID-19 pandemic, and outline its future challenges.
Related papers
- DrugCLIP: Contrastive Drug-Disease Interaction For Drug Repurposing [4.969453745531116]
DrugCLIP is a contrastive learning method to learn drug and disease's interaction without negative labels.
We have curated a drug repurposing dataset based on real-world clinical trial records.
arXiv Detail & Related papers (2024-07-02T13:41:59Z) - Zero-shot Learning of Drug Response Prediction for Preclinical Drug
Screening [38.94493676651818]
We propose a zero-shot learning solution for the.
task in preclinical drug screening.
Specifically, we propose a Multi-branch Multi-Source Domain Adaptation Test Enhancement Plug-in, called MSDA.
arXiv Detail & Related papers (2023-10-05T05:55:41Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - KGML-xDTD: A Knowledge Graph-based Machine Learning Framework for Drug
Treatment Prediction and Mechanism Description [11.64859287146094]
We propose KGML-xDTD: a Knowledge Graph-based Machine Learning framework for explainably predicting Drugs Treating Diseases.
We leverage knowledge-and-publication based information to extract biologically meaningful "demonstration paths" as the intermediate guidance in the Graph-based Reinforcement Learning process.
arXiv Detail & Related papers (2022-11-30T17:05:22Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - ImDrug: A Benchmark for Deep Imbalanced Learning in AI-aided Drug
Discovery [79.08833067391093]
Real-world pharmaceutical datasets often exhibit highly imbalanced distribution.
We introduce ImDrug, a benchmark with an open-source Python library which consists of 4 imbalance settings, 11 AI-ready datasets, 54 learning tasks and 16 baseline algorithms tailored for imbalanced learning.
It provides an accessible and customizable testbed for problems and solutions spanning a broad spectrum of the drug discovery pipeline.
arXiv Detail & Related papers (2022-09-16T13:35:57Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Heterogeneous Treatment Effect Estimation using machine learning for
Healthcare application: tutorial and benchmark [8.869515663374248]
Many studies have shown that drugs effects are heterogeneous among the population.
Lots of advanced machine learning models about estimating heterogeneous treatment effects (HTE) have emerged in recent years.
We aim to introduce the HTE methodology to the healthcare area and provide feasibility consideration.
arXiv Detail & Related papers (2021-09-27T02:34:44Z) - When deep learning meets causal inference: a computational framework for
drug repurposing from real-world data [12.68717103979673]
Existing methods for drug repurposing may exist translational issues when applied to human beings.
We present an efficient and easily-customized framework for generating and testing multiple candidates for drug repurposing.
We demonstrate our framework in a case study of coronary artery disease (CAD) by evaluating the effect of 55 repurposing drug candidates on various disease outcomes.
arXiv Detail & Related papers (2020-07-16T21:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.