論文の概要: ReSSL: Relational Self-Supervised Learning with Weak Augmentation
- arxiv url: http://arxiv.org/abs/2107.09282v1
- Date: Tue, 20 Jul 2021 06:53:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-21 15:07:16.110148
- Title: ReSSL: Relational Self-Supervised Learning with Weak Augmentation
- Title(参考訳): ReSSL: 弱体化によるリレーショナル自己監視型学習
- Authors: Mingkai Zheng, Shan You, Fei Wang, Chen Qian, Changshui Zhang,
Xiaogang Wang, Chang Xu
- Abstract要約: 自己教師付き学習は、データアノテーションなしで視覚表現を学ぶことに成功しました。
本稿では,異なるインスタンス間の関係をモデル化して表現を学習する新しいリレーショナルSSLパラダイムを提案する。
提案したReSSLは,性能とトレーニング効率の両面で,従来の最先端アルゴリズムよりも大幅に優れています。
- 参考スコア(独自算出の注目度): 68.47096022526927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised Learning (SSL) including the mainstream contrastive learning
has achieved great success in learning visual representations without data
annotations. However, most of methods mainly focus on the instance level
information (\ie, the different augmented images of the same instance should
have the same feature or cluster into the same class), but there is a lack of
attention on the relationships between different instances. In this paper, we
introduced a novel SSL paradigm, which we term as relational self-supervised
learning (ReSSL) framework that learns representations by modeling the
relationship between different instances. Specifically, our proposed method
employs sharpened distribution of pairwise similarities among different
instances as \textit{relation} metric, which is thus utilized to match the
feature embeddings of different augmentations. Moreover, to boost the
performance, we argue that weak augmentations matter to represent a more
reliable relation, and leverage momentum strategy for practical efficiency.
Experimental results show that our proposed ReSSL significantly outperforms the
previous state-of-the-art algorithms in terms of both performance and training
efficiency. Code is available at \url{https://github.com/KyleZheng1997/ReSSL}.
- Abstract(参考訳): 主流のコントラスト学習を含む自己教師あり学習(SSL)は、データアノテーションなしで視覚表現を学習することに成功した。
しかし、ほとんどのメソッドは、主にインスタンスレベルの情報に焦点を当てている(\ie、同じインスタンスの異なる拡張イメージは、同じフィーチャまたは同じクラスにクラスタを持つべきである)が、異なるインスタンス間の関係に注意が払われていない。
本稿では,異なるインスタンス間の関係をモデル化して表現を学習するリレーショナル自己教師型学習(Relational Self-supervised Learning, ReSSL)フレームワークを提案する。
特に,提案手法では,異なるインスタンス間でのペアワイズ類似度の分布を,異なる拡張の特徴埋め込みに適合させるために,‘textit{relation} metric’として用いた。
さらに, 性能向上のためには, より信頼性の高い関係を表現し, 実用効率にモーメント戦略を活用することが重要である。
実験の結果,提案したReSSLは,性能とトレーニング効率の両面で,従来の最先端アルゴリズムよりも大幅に優れていた。
コードは \url{https://github.com/KyleZheng1997/ReSSL} で入手できる。
関連論文リスト
- Augmentations vs Algorithms: What Works in Self-Supervised Learning [9.194402355758164]
自己監督学習(SSL)におけるデータ強化,事前学習アルゴリズム,モデルアーキテクチャの相対効果について検討する。
異なるSSLメソッドを単一の共有テンプレートに統合する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-08T23:42:06Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Enlarging Instance-specific and Class-specific Information for Open-set
Action Recognition [47.69171542776917]
よりリッチなセマンティックな多様性を持つ機能は、同じ不確実性スコアの下で、オープンセットのパフォーマンスを著しく向上させることができる。
よりIS情報を保持するために、インスタンスの分散を同じクラス内に保持するために、新しいPSLフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-03-25T04:07:36Z) - Beyond Instance Discrimination: Relation-aware Contrastive
Self-supervised Learning [75.46664770669949]
本稿では,関係認識型コントラスト型自己教師型学習(ReCo)をインスタンス関係に統合するために提案する。
当社のReCoは、常に顕著なパフォーマンス改善を実現しています。
論文 参考訳(メタデータ) (2022-11-02T03:25:28Z) - On Higher Adversarial Susceptibility of Contrastive Self-Supervised
Learning [104.00264962878956]
コントラスト型自己教師学習(CSL)は,画像と映像の分類において,教師あり学習のパフォーマンスに適合するか上回っている。
2つの学習パラダイムによって誘導される表現の性質が似ているかどうかは、いまだに不明である。
我々は,CSL表現空間における単位超球面上のデータ表現の均一分布を,この現象の鍵となる要因として同定する。
CSLトレーニングでモデルロバスト性を改善するのにシンプルだが有効である戦略を考案する。
論文 参考訳(メタデータ) (2022-07-22T03:49:50Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
本稿では、異なるインスタンス間の関係をモデル化して表現を学習する新しいリレーショナル自己教師型学習(ReSSL)フレームワークを提案する。
提案手法では,異なるインスタンス間でのペアワイズ類似度の分布を,テクトitrelationmetricとして高めている。
実験の結果,提案したReSSLは,ネットワークアーキテクチャの異なる最先端手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-03-16T16:14:19Z) - Memory-Augmented Relation Network for Few-Shot Learning [114.47866281436829]
本研究では,新しい距離学習手法であるメモリ拡張リレーショナルネットワーク(MRN)について検討する。
MRNでは、作業状況と視覚的に類似したサンプルを選択し、重み付け情報伝搬を行い、選択したサンプルから有用な情報を注意深く集約し、その表現を強化する。
我々は、MRNが祖先よりも大幅に向上し、他の数発の学習手法と比較して、競争力や性能が向上することを示した。
論文 参考訳(メタデータ) (2020-05-09T10:09:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。