Cavity-mediated electron hopping in disordered quantum Hall systems
- URL: http://arxiv.org/abs/2107.09435v1
- Date: Tue, 20 Jul 2021 12:12:08 GMT
- Title: Cavity-mediated electron hopping in disordered quantum Hall systems
- Authors: Cristiano Ciuti
- Abstract summary: We show that the counter-rotating (anti-resonant) light-matter interaction produces an effective hopping between disordered eigenstates within the last occupied Landau band.
We study such a cavity-mediated hopping mechanism in the dual presence of a random disordered potential.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the emergence of long-range electron hopping mediated by
cavity vacuum fields in disordered quantum Hall systems. We show that the
counter-rotating (anti-resonant) light-matter interaction produces an effective
hopping between disordered eigenstates within the last occupied Landau band.
The process involves a number of intermediate states equal to the Landau
degeneracy: each of these states consists of a virtual cavity photon and an
electron excited in the next Landau band with the same spin. We study such a
cavity-mediated hopping mechanism in the dual presence of a random disordered
potential and a wall potential near the edges, accounting for both paramagnetic
coupling and diamagnetic renormalization. We determine the cavity-mediated
scattering rates, showing the impact on both bulk and edge states. The effect
for edge states is shown to increase when their energy approaches the
disordered bulk band, while for higher energy the edge states become
asymptotically free. We determine the scaling properties while increasing the
Landau band degeneracy. Consequences on the quantum Hall physics and future
perspectives are discussed.
Related papers
- Imaging Coulomb interactions and migrating Dirac cones in twisted graphene by local quantum oscillations [0.23191656838250044]
We use a nanoscale scanning superconducting quantum interference device to image the local thermodynamic quantum oscillations in alternating-twist trilayer graphene at magnetic fields as low as 56 mT.
We find that the charging self-energy due to occupied electronic states, is critical in explaining the high carrier density physics.
At half-filling of the conduction flat band, we observe a Stoner-like symmetry breaking, suggesting that it is the most robust mechanism in the hierarchy of phase transitions.
arXiv Detail & Related papers (2024-07-15T12:47:22Z) - Circuit QED with a Giant Atom Coupling to Left-handed Superlattice
Metamaterials [6.933389994611203]
We study the quantum dynamics of a giant atom interacting with left-handed superlattice metamaterials.
The presence of asymmetric band edges leads to diverse interference dynamics.
arXiv Detail & Related papers (2023-09-13T09:16:40Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Fermion-parity qubit in a proximitized double quantum dot [0.0]
We encode quantum information in the local fermion parity of two tunnel-coupled quantum dots embedded in a Josephson junction.
At the sweet spot, the qubit states have zero charge dipole moment.
This protects the qubit from dephasing due to charge noise acting on the potential of each dot, as well as fluctuations of the (weak) inter-dot tunneling.
arXiv Detail & Related papers (2023-07-11T18:00:03Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Quantum electron transport controlled by cavity vacuum fields [0.0]
We study theoretically how the coupling to cavity vacuum fields affects the electron transport in quantum conductors.
We show how the cavity vacuum fields can lead to both large enhancement or suppression of electron conductance in the ballistic regime.
arXiv Detail & Related papers (2022-06-27T16:27:16Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Unconventional Quantum Electrodynamics with Hofstadter-Ladder Waveguide [5.693517450178467]
We propose a novel quantum electrodynamics (QED) platform where quantum emitters interact with a Hofstadter-ladder waveguide.
By assuming emitter's frequency to be resonant with the lower band, we find that the spontaneous emission is chiral.
Due to quantum interference, we find that both the emitter-waveguide interaction and the amplitudes of bound states are periodically modulated by giant emitter's size.
arXiv Detail & Related papers (2022-03-21T07:07:26Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.