論文の概要: Predicting the 2020 US Presidential Election with Twitter
- arxiv url: http://arxiv.org/abs/2107.09640v1
- Date: Mon, 19 Jul 2021 14:59:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-22 02:43:50.514039
- Title: Predicting the 2020 US Presidential Election with Twitter
- Title(参考訳): 2020年の大統領選挙をtwitterで予測する
- Authors: Michael Caballero
- Abstract要約: ソーシャルメディアデータを利用した選挙予測は、選挙戦略に大きな影響を与える可能性がある。
本稿は、Twitterデータを用いた2020年アメリカ合衆国大統領選挙の分析・予測における過去の成功方法について考察する。
これはデータの不足による選挙予測の正確な方法であるかどうかについては不確定である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One major sub-domain in the subject of polling public opinion with social
media data is electoral prediction. Electoral prediction utilizing social media
data potentially would significantly affect campaign strategies, complementing
traditional polling methods and providing cheaper polling in real-time. First,
this paper explores past successful methods from research for analysis and
prediction of the 2020 US Presidential Election using Twitter data. Then, this
research proposes a new method for electoral prediction which combines
sentiment, from NLP on the text of tweets, and structural data with aggregate
polling, a time series analysis, and a special focus on Twitter users critical
to the election. Though this method performed worse than its baseline of
polling predictions, it is inconclusive whether this is an accurate method for
predicting elections due to scarcity of data. More research and more data are
needed to accurately measure this method's overall effectiveness.
- Abstract(参考訳): ソーシャルメディアデータによる世論調査において主要なサブドメインの一つが選挙予測である。
ソーシャルメディアデータを利用した選挙予測は、キャンペーン戦略に大きな影響を与える可能性があり、従来のポーリング手法を補完し、リアルタイムに安価なポーリングを提供する。
まず、Twitterデータを用いた2020年アメリカ合衆国大統領選挙の分析と予測に関する研究から、過去の成功方法を探る。
そこで本研究では,ツイートのテキスト上でのNLPからの感情と,集計ポーリング,時系列分析,および選挙に批判的なTwitterユーザに焦点を当てた,新たな選挙予測手法を提案する。
この方法は世論予測のベースラインよりは悪かったが、データの不足による選挙予測の正確な方法であるかどうかは決定的ではない。
この手法の全体的な効果を正確に測定するには、さらなる研究とデータが必要である。
関連論文リスト
- ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents [70.17229548653852]
我々は,大規模言語モデルに基づく革新的な選挙シミュレーションフレームワークであるElectronSimを紹介する。
ソーシャルメディアプラットフォームからサンプリングした100万レベルの投票者プールを提示し、正確な個人シミュレーションを支援する。
PPEは、米国大統領選挙シナリオ下での我々の枠組みの性能を評価するための、世論調査に基づく大統領選挙ベンチマークである。
論文 参考訳(メタデータ) (2024-10-28T05:25:50Z) - On the Use of Proxies in Political Ad Targeting [49.61009579554272]
我々は、主要な政治広告主がプロキシ属性をターゲットとして緩和を回避したことを示す。
本研究は政治広告の規制に関する議論に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-10-18T17:15:13Z) - Analyzing and Estimating Support for U.S. Presidential Candidates in Twitter Polls [1.71952017922628]
我々は、2016年と2020年の大統領選挙において、米国の大統領候補に対する支持を誇示する2万件近いTwitterの投票を調査した。
われわれの調査結果によると、Twitterの世論調査は、大統領候補の地位から、さまざまな点で偏っている。
2016年と2020年の世論調査は、主に年上の男性によって作成され、ドナルド・トランプ氏に有利な偏見を示していた。
論文 参考訳(メタデータ) (2024-06-05T14:57:29Z) - Election Polls on Social Media: Prevalence, Biases, and Voter Fraud Beliefs [5.772751069162341]
この研究は、2020年のアメリカ合衆国大統領選挙に焦点を当てている。
われわれは、Twitterの世論調査が年上の男性によって不釣り合いに書かれており、ドナルド・トランプ候補に対する大きな偏見を示していることに気付く。
また、選挙投票に参加するTwitterアカウントはボットになりがちで、選挙投票の結果は選挙日よりも選挙前の方が偏見が強いこともわかりました。
論文 参考訳(メタデータ) (2024-05-18T02:29:35Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Correcting public opinion trends through Bayesian data assimilation [8.406968279478347]
世論を測ることが民主選挙における重要な焦点である。
従来のサーベイポーリングは依然として最も一般的な推定手法である。
Twitterの意見マイニングはこれらの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-05-29T11:39:56Z) - Forecasting election results by studying brand importance in online news [0.0]
本研究は,ビッグテキストデータにおけるブランド重要度の新しい尺度であるセマンティックブランドスコアを用いて,オンラインニュースに基づく選挙予測を行う。
イタリアの4つの投票イベントの予測は、異なる投票システムに一貫した結果をもたらした。
論文 参考訳(メタデータ) (2021-05-12T16:30:33Z) - Mundus vult decipi, ergo decipiatur: Visual Communication of Uncertainty
in Election Polls [56.8172499765118]
我々は、今放送と予測におけるバイアスの潜在的な源について論じる。
概念は、誤認識された正確性の問題を軽減するために提示される。
主要なアイデアの1つは、パーティーシェアではなくイベントの確率を使うことである。
論文 参考訳(メタデータ) (2021-04-28T07:02:24Z) - Electoral Forecasting Using a Novel Temporal Attenuation Model:
Predicting the US Presidential Elections [91.3755431537592]
予備選別世論調査データを用いて予測精度を向上させる新しいマクロスケール時間減衰(TA)モデルを開発した。
我々の仮説は、世論調査を公表するタイミングは、特に選挙直前の世論の変動に重要な役割を果たす、というものである。
我々は,48年間の平均予測誤差2.8-3.28点を蓄積するTAモデルの2つの異なる実装を提案する。
論文 参考訳(メタデータ) (2020-04-30T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。