Human Perception of Audio Deepfakes
- URL: http://arxiv.org/abs/2107.09667v1
- Date: Tue, 20 Jul 2021 09:19:42 GMT
- Title: Human Perception of Audio Deepfakes
- Authors: Nicolas M. M\"uller, Karla Markert, Konstantin B\"ottinger
- Abstract summary: We compare the ability of humans and machines in detecting audio deepfakes.
We found that the machine generally outperforms the humans in detecting audio deepfakes.
Younger participants are on average better at detecting audio deepfakes than older participants, while IT-professionals hold no advantage over laymen.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent emergence of deepfakes, computerized realistic multimedia fakes,
brought the detection of manipulated and generated content to the forefront.
While many machine learning models for deepfakes detection have been proposed,
the human detection capabilities have remained far less explored. This is of
special importance as human perception differs from machine perception and
deepfakes are generally designed to fool the human. So far, this issue has only
been addressed in the area of images and video.
To compare the ability of humans and machines in detecting audio deepfakes,
we conducted an online gamified experiment in which we asked users to discern
bonda-fide audio samples from spoofed audio, generated with a variety of
algorithms. 200 users competed for 8976 game rounds with an artificial
intelligence (AI) algorithm trained for audio deepfake detection. With the
collected data we found that the machine generally outperforms the humans in
detecting audio deepfakes, but that the converse holds for a certain attack
type, for which humans are still more accurate. Furthermore, we found that
younger participants are on average better at detecting audio deepfakes than
older participants, while IT-professionals hold no advantage over laymen. We
conclude that it is important to combine human and machine knowledge in order
to improve audio deepfake detection.
Related papers
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - Unmasking Illusions: Understanding Human Perception of Audiovisual Deepfakes [49.81915942821647]
This paper aims to evaluate the human ability to discern deepfake videos through a subjective study.
We present our findings by comparing human observers to five state-ofthe-art audiovisual deepfake detection models.
We found that all AI models performed better than humans when evaluated on the same 40 videos.
arXiv Detail & Related papers (2024-05-07T07:57:15Z) - Can deepfakes be created by novice users? [15.014868583616504]
We conduct user studies to understand whether participants with advanced computer skills can create Deepfakes.
We find that 23.1% of the participants successfully created complete Deepfakes with audio and video.
We use Deepfake detection software tools as well as human examiner-based analysis, to classify the successfully generated Deepfake outputs as fake, suspicious, or real.
arXiv Detail & Related papers (2023-04-28T00:32:24Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
There is a growing concern that the advancement of artificial intelligence (AI) technology may produce fake photos.
This study aims to comprehensively evaluate agents for distinguishing state-of-the-art AI-generated visual content.
arXiv Detail & Related papers (2023-04-25T17:51:59Z) - Using Deep Learning to Detecting Deepfakes [0.0]
Deepfakes are videos or images that replace one persons face with another computer-generated face, often a more recognizable person in society.
To combat this online threat, researchers have developed models that are designed to detect deepfakes.
This study looks at various deepfake detection models that use deep learning algorithms to combat this looming threat.
arXiv Detail & Related papers (2022-07-27T17:05:16Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Deepfake Caricatures: Amplifying attention to artifacts increases
deepfake detection by humans and machines [17.7858728343141]
Deepfakes pose a serious threat to digital well-being by fueling misinformation.
We introduce a framework for amplifying artifacts in deepfake videos to make them more detectable by people.
We propose a novel, semi-supervised Artifact Attention module, which is trained on human responses to create attention maps that highlight video artifacts.
arXiv Detail & Related papers (2022-06-01T14:43:49Z) - Audio-Visual Person-of-Interest DeepFake Detection [77.04789677645682]
The aim of this work is to propose a deepfake detector that can cope with the wide variety of manipulation methods and scenarios encountered in the real world.
We leverage a contrastive learning paradigm to learn the moving-face and audio segment embeddings that are most discriminative for each identity.
Our method can detect both single-modality (audio-only, video-only) and multi-modality (audio-video) attacks, and is robust to low-quality or corrupted videos.
arXiv Detail & Related papers (2022-04-06T20:51:40Z) - Watch Those Words: Video Falsification Detection Using Word-Conditioned
Facial Motion [82.06128362686445]
We propose a multi-modal semantic forensic approach to handle both cheapfakes and visually persuasive deepfakes.
We leverage the idea of attribution to learn person-specific biometric patterns that distinguish a given speaker from others.
Unlike existing person-specific approaches, our method is also effective against attacks that focus on lip manipulation.
arXiv Detail & Related papers (2021-12-21T01:57:04Z) - Evaluation of an Audio-Video Multimodal Deepfake Dataset using Unimodal
and Multimodal Detectors [18.862258543488355]
Deepfakes can cause security and privacy issues.
New domain of cloning human voices using deep-learning technologies is also emerging.
To develop a good deepfake detector, we need a detector that can detect deepfakes of multiple modalities.
arXiv Detail & Related papers (2021-09-07T11:00:20Z) - Deepfake detection: humans vs. machines [4.485016243130348]
We present a subjective study conducted in a crowdsourcing-like scenario, which systematically evaluates how hard it is for humans to see if the video is deepfake or not.
For each video, a simple question: "Is face of the person in the video real of fake?" was answered on average by 19 na"ive subjects.
The evaluation demonstrates that while the human perception is very different from the perception of a machine, both successfully but in different ways are fooled by deepfakes.
arXiv Detail & Related papers (2020-09-07T15:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.