Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks
- URL: http://arxiv.org/abs/2207.10170v5
- Date: Mon, 6 May 2024 06:53:31 GMT
- Title: Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks
- Authors: Tim Franzmeyer, Stephen McAleer, João F. Henriques, Jakob N. Foerster, Philip H. S. Torr, Adel Bibi, Christian Schroeder de Witt,
- Abstract summary: We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
- Score: 76.35478518372692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agents deployed in the real world need to be robust against adversarial attacks on sensory inputs. Robustifying agent policies requires anticipating the strongest attacks possible. We demonstrate that existing observation-space attacks on reinforcement learning agents have a common weakness: while effective, their lack of information-theoretic detectability constraints makes them detectable using automated means or human inspection. Detectability is undesirable to adversaries as it may trigger security escalations. We introduce {\epsilon}-illusory, a novel form of adversarial attack on sequential decision-makers that is both effective and of {\epsilon}-bounded statistical detectability. We propose a novel dual ascent algorithm to learn such attacks end-to-end. Compared to existing attacks, we empirically find {\epsilon}-illusory to be significantly harder to detect with automated methods, and a small study with human participants (IRB approval under reference R84123/RE001) suggests they are similarly harder to detect for humans. Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses. The project website can be found at https://tinyurl.com/illusory-attacks.
Related papers
- Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors [0.0]
An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly.
Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy.
Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks.
arXiv Detail & Related papers (2024-04-18T12:13:09Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
We propose a novel learning framework, RobustSense, to defend common adversarial attacks.
Our method works well on wireless human activity recognition and person identification systems.
arXiv Detail & Related papers (2022-04-04T15:06:03Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
Adversarial attacks perturb images such that a deep neural network produces incorrect classification results.
A promising approach to defend against adversarial attacks on natural multi-object scenes is to impose a context-consistency check.
We present the first approach for generating context-consistent adversarial attacks that can evade the context-consistency check.
arXiv Detail & Related papers (2022-03-29T04:33:06Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
In this work, we present an adversarial attack that simultaneously evades the anomaly detectors and rule checkers of a CPS.
Inspired by existing gradient-based approaches, our adversarial attack crafts noise over the sensor and actuator values, then uses a genetic algorithm to optimise the latter.
We implement our approach for two real-world critical infrastructure testbeds, successfully reducing the classification accuracy of their detectors by over 50% on average.
arXiv Detail & Related papers (2021-05-22T12:19:03Z) - Adversarial Attack Attribution: Discovering Attributable Signals in
Adversarial ML Attacks [0.7883722807601676]
Even production systems, such as self-driving cars and ML-as-a-service offerings, are susceptible to adversarial inputs.
Can perturbed inputs be attributed to the methods used to generate the attack?
We introduce the concept of adversarial attack attribution and create a simple supervised learning experimental framework to examine the feasibility of discovering attributable signals in adversarial attacks.
arXiv Detail & Related papers (2021-01-08T08:16:41Z) - Adversarial Feature Desensitization [12.401175943131268]
We propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field.
Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs.
arXiv Detail & Related papers (2020-06-08T14:20:02Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.