Certification of quantum states with hidden structure of their
bitstrings
- URL: http://arxiv.org/abs/2107.09894v1
- Date: Wed, 21 Jul 2021 06:22:35 GMT
- Title: Certification of quantum states with hidden structure of their
bitstrings
- Authors: O. M. Sotnikov, I. A. Iakovlev, A. A. Iliasov, M. I. Katsnelson, A. A.
Bagrov, V. V. Mazurenko
- Abstract summary: We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of quantum computing technologies already made it
possible to manipulate a collective state of several dozen of qubits. This
success poses a strong demand on efficient and reliable methods for
characterization and verification of large-scale many-body quantum states.
Traditional methods, such as quantum tomography, which require storing and
operating wave functions on classical computers, become problematic to use in
the regime of large number of degrees of freedom. In this paper, we propose a
numerically cheap procedure to describe and distinguish quantum states which is
based on a limited number of simple projective measurements in at least two
different bases and computing inter-scale dissimilarities of the resulting
bit-string patterns via coarse-graining. The information one obtains through
this procedure can be viewed as a "hash function" of quantum state -- a simple
set of numbers which is specific for a concrete many-body wave function and can
be used for certification. By studying a number of archetypal examples, we show
that it is enough to characterize quantum states with different structure of
entanglement, including the chaotic quantum states. The connection of the
dissimilarity to standard measures of quantum correlations such as von Neumann
entropy is discussed. We also demonstrate that our approach can be employed to
detect phase transitions of different nature in many-body quantum magnetic
systems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantifying information scrambling via Classical Shadow Tomography on
Programmable Quantum Simulators [0.0]
We develop techniques to probe the dynamics of quantum information, and implement them experimentally on an IBM superconducting quantum processor.
We identify two unambiguous signatures of quantum information scrambling, neither of which can be mimicked by dissipative processes.
We measure both signatures, and support our results with numerical simulations of the quantum system.
arXiv Detail & Related papers (2022-02-10T16:36:52Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z) - Reconstructing quantum states with quantum reservoir networks [4.724825031148412]
We introduce a quantum state tomography platform based on the framework of reservoir computing.
It forms a quantum neural network, and operates as a comprehensive device for reconstructing an arbitrary quantum state.
arXiv Detail & Related papers (2020-08-14T14:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.